Skip to main content

Advertisement

Log in

Modelling the effect of a booster vaccination on disease epidemiology

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Despite the effectiveness of vaccines in dramatically decreasing the number of new infectious cases and severity of illnesses, imperfect vaccines may not completely prevent infection. This is because the immunity afforded by these vaccines is not complete and may wane with time, leading to resurgence and epidemic outbreaks notwithstanding high levels of primary vaccination. To prevent an endemic spread of disease, and achieve eradication, several countries have introduced booster vaccination programs. The question of whether this strategy could eventually provide the conditions for global eradication is addressed here by developing a seasonally-forced mathematical model. The analysis of the model provides the threshold condition for disease control in terms of four major parameters: coverage of the primary vaccine; efficacy of the vaccine; waning rate; and the rate of booster administration. The results show that if the vaccine provides only temporary immunity, then the infection typically cannot be eradicated by a single vaccination episode. Furthermore, having a booster program does not necessarily guarantee the control of a disease, though the level of epidemicity may be reduced. In addition, these findings strongly suggest that the high coverage of primary vaccination remains crucial to the success of a booster strategy. Simulations using estimated parameters for measles illustrate model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.M., Grenfell, B.T.: Quantitative investigations of different vaccination policies for the control of congentila rubella syndrome (CRS) in the United Kingdom. J. Hyg. Camb. 96, 305–333 (1986)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford Univ. Press, London/New York, 1991

  3. Behrman, R.E., Kliegman, R.M.: Nelson Essentials of Paediatrics. Saunders, 1998

  4. Breban, R., Blower, S., Geffen, D.: Letter to the Editor: The reinfection threshold does not exist. J. Theor. Biol. 235, 151–152 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bolker, B.M.: Chaos and complexity in measles models: a comparative numerical study. IMA J. Math. Appl. Med. Biol. 10, 83–95 (1993)

    MATH  Google Scholar 

  6. Böttiger, M., Forsgren, M.: Twenty years' experience of rubbela vaccination in Sweden: 10 years of selective vaccination (of 12-year-old girls and of women postpartum) and 13 years of a general two-dose vaccination. Vaccine 15, 1538–1544 (1997)

    Article  Google Scholar 

  7. Chen, R.T., Markowitz, L.E., Albrecht, P.: Measles antibodies: re-evaluation of protective titres. J. Infect. Dis. 162, 1036–1062 (1990)

    Google Scholar 

  8. de Francisco, A., Hall, A.J., Unicomb, L., Chakraborty, J., Yunus, M., Sack, R.B.: Maternal measles antibody decay in rural Bangladeshi infants–implications for vaccination schedules. Vaccine 16, 564–568 (1998)

    Article  Google Scholar 

  9. Dietz, K.: The evaluation of rubella vaccination strategies. The Mathematical Theory of the Dynamics of Biological population II. (Academic Press, NY, NY 1981) 81–98

  10. Davidkin, I., Valle, M.: Vaccine-induced measles virus antibodies after two doses of combined measles, mumps and rubella vaccine: a 12-year follow-up in two cohorts. Vaccine 16, 2052–2057 (1998)

    Article  Google Scholar 

  11. Earn, D.J.D., Rohani, P., Bolker, B.M., Grenfell, B.T.: A simple model for complex dynamical transitions in epidemics. Science 287, 667–670 (2000)

    Article  Google Scholar 

  12. Fenner, F., Henderson, D.A., Arita, I., Jezek, Z., Ladnyi, I.D.: Smallpox and its eradication. WHO, 1998

  13. Garly, M.A., Aaby, P.: The challenge of improving the efficacy of measles vaccine. Acta Tropica 85, 1–17 (2003)

    Article  Google Scholar 

  14. Gomes, M.G.M., White, L.J., Medley, G.F.: Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J. Theor. Biol. 228, 539–549 (2004)

    Article  MathSciNet  Google Scholar 

  15. Gomes, M.G.M., White, L.J., Medley, G.F.: The reinfection threshold. J. Theor. Biol. 236, 111–113 (2005)

    Article  MathSciNet  Google Scholar 

  16. Gustavson, T.L., Lievens, A.W., Brunell, P.A.: Measles outbreak in a fully immunized secondary school population. 316, 771–774 (1987)

  17. Galazka, A.M., Robertson, S.E., Oblapenko, G.P.: Resurgence of diphteria. Eur. J. Epidemiol. 11, 95–105 (1995)

    Article  Google Scholar 

  18. Gay, N.J., Pelletier, L., Duclos, P.: Modelling the incidence of measles in Canada: an assessment of the options for vaccination policy. Vaccine 16, 794–801 (1998)

    Article  Google Scholar 

  19. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, AMS 42, Springer-Verlag, New York, Inc. 1983

  20. Henao-Restrepo, A-M., Strebel, P., Hoekstra, E.J., Birmingham, M., Bilous, J.: Experience in global measles control, 1990–2000. J. Infec. Dis. 187, S15-21 (2003)

  21. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42 (4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  22. Janaszek, W., Gay, N.J., Gut, W.: Measles vaccine efficacy during an epidemic in 1998 in the highly vaccinated population in Poland. Vaccine 21, 473–478 (2003)

    Article  Google Scholar 

  23. Janaszek, W., Slusarczyk, J.: Immunity against measles in population of women and infants in Poland. Vaccine 21, 2948–2953 (2003)

    Article  Google Scholar 

  24. Katzmann, W., Dietz, K.: Evaluation of age-specific vaccination strategies. Theor. Pop. Biol. 25, 125–137 (1984)

    Article  MATH  Google Scholar 

  25. Keeling, M.J., Grenfell, B.T.: Understanding the persistence of measles: reconciling theory, simulation and observation. Proc. R. Soc. Lond. B 269, 335–343 (2002)

    Article  Google Scholar 

  26. Keeling, M.J., Rohani, P., Grenfell, B.T.: Seasonally forced disease dynamics explored as switching between attractors. Phys. D 148, 317–335 (2001)

    Article  MATH  Google Scholar 

  27. Kribs-Zaleta, C.M., Martcheva, M.: Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177, 317–332 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kribs-Zaleta, C.M., Velasco-Hernández, J.X.: A simple vaccination model with multiple endemic states. Math. Biosci. 164, 183–201 (2000)

    Article  MATH  Google Scholar 

  29. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications. Academic Press, New York, 1969.

  30. Li, X-Z., Gupur, G.: Global stability of an age-structured SIRS epidemic model with vaccination. Discrete Contin. Dyn. Syst. Ser. B, 4, 643–652 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. McLean, A.R., Anderson, R.M.: Measles in developing countries. Part I. Epidemiological parameters and patterns. Epidemiol. Infect. 100, 11–133 (1988)

    Google Scholar 

  32. Moghadas, S.M.: Modelling the effect of imperfect vaccines on disease epidemiology. Discrete Contin. Dyn. Syst. Ser. B, 4, 999–1012 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Moghadas, S.M., Gumel, A.B.: A mathematical study of a model for childhood diseases with non-permanent immunity. J. Comput. Appl. Math. 157, 347–363 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mossong, J., Muller, C.P.: Modelling measles re-emergence as a result of waning of immunity in vaccinated population. Vaccine, 21, 4597–4603 (2003)

    Article  Google Scholar 

  35. Mossong, J., Nokes, J., Edmunds, D.J., Cox, W.J., Ratman, M.J., Muller, C.P.: Modelling the impact of subclinical measles transmission in vaccinated populations with waning immunity. Am. J. Epidemiol. 150, 1238–1249 (1999)

    Google Scholar 

  36. Müller, J.: Optimal vaccination patterns in age-structured populations. SIAM J. Appl. Math. 59, 222–241 (1998)

    Article  Google Scholar 

  37. Paulo, A.C., Gomes, M.C., Casinhas, A.C., Horta, A.: Multiple dose vaccination against childhood diseases: high coverage with the first dose remains crucial for eradication. IMA J. Math. Appl. Med. Biol. 17, 201–212 (2000)

    MATH  Google Scholar 

  38. Pelletier, L., Chung, P., Duclos, P., Manga, P., Scott, J.: A benefit-cost analysis of two-dose measles immunization in Canada. Vaccine 16, 989–996 (1998)

    Article  Google Scholar 

  39. Piccardi, C., Lazzaris, S.: Vaccination policies for chaos reduction in childhood epidemics. IEEE Trans. Biomed. Eng. 45, 591–595 (1998)

    Article  Google Scholar 

  40. Piyawong, W., Twizell, E.H., Gumel, A.B.: An unconditionally convergent finite-difference scheme for the SIR model. Appl. Math. Comput. 146, 611–625 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ratnam, S., West, R., Gadag, V., Burris, J.: Measles immunization strategy: measles antibody response following MMR II vaccination of children at one year of age. Can. J. Public Health 87, 97–100 (1996)

    Google Scholar 

  42. Rohani, P., Earn, D.J.D., Finkenstädt, B., Grenfell, B.T.: Population dynamics interference among childhood diseases. Proc. R. Soc. Lond. B 265, 2033–2041 (1998)

    Article  Google Scholar 

  43. Rohani, P., Kelling, M.J., Grenfell, B.T.: The interplay between determinism and stochasticity in childhood diseases. Am. Nat. 159, 469–481 (2002)

    Article  Google Scholar 

  44. Rouderfer, V., Becker, N.G., Hethcote, H.W.: Waning immunity and its effect on vaccination schedules. Math. Biosci. 124, 59–82 (1994)

    Article  MATH  Google Scholar 

  45. Shulgin, B., Stone, L., Agur, A.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 1123–1148 (1998)

    Article  MATH  Google Scholar 

  46. Strebel, P., Cochi, S., Grabowsky, M., Bilous, J., Hersh, B.S., Okwo-Bele, J.M., Hoekstra, E., Wright, P., Katz, S.: The unfinished measles immunization agenda. J. Inf. Dis. 187, S1–S7 (2003)

    Google Scholar 

  47. Teitelbaum, M.A., Edmunds, M.: Immunization and vaccine-preventable illness, United States, 1992–1997. Stat. Bull. Metrop. Insur. Co. 80, 13–20 (1999)

    Google Scholar 

  48. Whittle, H.C., Aaby, P., Samb, B., Jensen, H., Bennet, J., Simondon, F.: Effect of subclinical infection on maintaining immunity against measles in vaccinated children in West Africa. Lancet 353, 98–102 (1999)

    Article  Google Scholar 

  49. Williams, B.G., Cutts, F.T., Dye, C.: Measles vaccination policy. Epidemiol. Infect. 115, 603–621 (1995)

    Article  Google Scholar 

  50. Wright, S.W.: Pertussis infection in adults. South. Med. J. 91, 702–708 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.E. Alexander.

Additional information

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). One of the authors (P.R.) acknowledges the support of the Ellison Medical Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, M., Moghadas, S., Rohani, P. et al. Modelling the effect of a booster vaccination on disease epidemiology. J. Math. Biol. 52, 290–306 (2006). https://doi.org/10.1007/s00285-005-0356-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0356-0

Key words or phrases

Navigation