Skip to main content
Log in

Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Real food chains are very rarely investigated since long data sequences are required. Typically, if we consider that an ecosystem evolves with a period corresponding to the time for maturation, possessing few dozen of cycles would require to count species over few centuries. One well known example of a long data set is the number of Canadian lynx furs caught by the Hudson Bay company between 1821 and 1935 as reported by Elton and Nicholson in 1942. In spite of the relative quality of the data set (10 undersampled cycles), two low-dimensional global models that settle to chaotic attractors were obtained. They are compared with an ad hoc 3D model which was proposed as a possible model for this data set. The two global models, which were estimated with no prior knowledge about the dynamics, can be considered as direct evidences of chaos in real ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguire L.A. and Letellier C. (2005). Observability of multivariate differential embeddings. J. Phys. A 38: 6311

    Article  MathSciNet  Google Scholar 

  2. Aguirre L.A. and Billings S.A. (1995). Identification of models for chaotic systems from noisy data: implications for performance and nonlinear filtering. Physica D 85: 239

    Article  MATH  Google Scholar 

  3. Aguirre L.A., Freitas U.S., Letellier C. and Maquet J. (2001). Structure selection technique applied to continuous time nonlinear models. Physica D 158: 1

    Article  MATH  Google Scholar 

  4. Blasius B. and Stone L. (2000). Chaos and phase synchronization in ecological systems. Int. J. Bifurcat. Chaos 10: 2361

    Google Scholar 

  5. Blasius B., Huppert A. and Stone L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399: 354

    Article  Google Scholar 

  6. Cao L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110: 43

    Article  MATH  Google Scholar 

  7. Cao L., Mees A. and Judd K. (1997). Modeling and predicting non-stationary time series. Int J Bifurcat. Chaos 7: 1823

    Article  MATH  Google Scholar 

  8. Crutchfield J.P. and McNamara B.S. (1987). Equations of motion from a data series. Complex Syst. 1: 417

    MATH  MathSciNet  Google Scholar 

  9. Elton C. and Nicholson M. (1942). The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol. 11: 215

    Article  Google Scholar 

  10. Gilmore R. and Lefranc M. (2002). The Topology of Chaos. Wiley, New York

    MATH  Google Scholar 

  11. Gilpin M. (1979). Spiral chaos in a predator prey model. Am. Nat. 113: 306

    Article  MathSciNet  Google Scholar 

  12. Gouesbet G. and Letellier C. (1994). Global vector field reconstruction by using a multivariate polynomial L 2-approximation on nets. Phys. Rev. E 49: 4955

    Article  MathSciNet  Google Scholar 

  13. Gouesbet G. and Maquet J. (1992). Construction of phenomenological models from numerical scalar time series. Physica D 58: 202

    Article  Google Scholar 

  14. Gurney W.S.C., Blythe S.P. and Nisbet R.M. (1980). Nicholson’s blowflies revisited. Nature 287: 17

    Article  Google Scholar 

  15. Hastings A., Hom C.L., Ellner S., Turchin P. and Godfray H.C.H. (1993). Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Syst. 24: 1–33

    Google Scholar 

  16. Kennel M.B., Brown R. and Abarbanel H.D.I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45: 3403

    Article  Google Scholar 

  17. Letellier C. and Aguirre L.A. (2002). Investigating nonlinear dynamics from time series: the influence of symmetries and the choice of observables. Chaos 12: 549

    Article  MATH  MathSciNet  Google Scholar 

  18. Letellier C. and Aguirre L.A. (2005). A graphical interpretation of observability in terms of feedback circuits. Phys. Rev. E 72: 056202

    Article  MathSciNet  Google Scholar 

  19. Letellier C., Aguirre L.A. and Maquet J. (2005). Relation between observability and differential embeddings for nonlinear dynamics. Phys. Rev. E 71: 066213

    MathSciNet  Google Scholar 

  20. Letellier, C., Aguirre, L.A., Maquet, J., Aziz-Alaoui.: Should all the species of a food chain be counted to investigate the global dynamics. Chaos Solitons Fractals 13, 1099 (2002)

  21. Letellier, C., Bennoud, M., Martel, G.: Intermittency and period-doubling cascade on tori in a bimode laser model. Chaos Solitons Fractals (in press) (2007)

  22. Letellier C., Dutertre P. and Maheu B. (1995). Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization. Chaos 5: 271

    Article  Google Scholar 

  23. Letellier C., Ménard O., Klinger Th., Piel A. and Bonhomme G. (2001). Dynamical analysis and map modelling of a thermionic diode plasma experiment. Physica D 156: 169

    Article  MATH  Google Scholar 

  24. Letellier, C., Maquet, J., Aguirre, L.A., Gilmore, R.: An equivariant 3D model for the long-term behavior of the solar activity. In: Visarath (ed.) 7th Experimental Chaos Conference, San Diego, August 25–29, 2002 AIP Press, New York (2003)

  25. Maquet J., Letellier C. and Aguirre L.A. (2004). Scalar modeling and analysis of a 3D biochemical reaction model. J. Theor. Biol. 228: 421

    Article  MathSciNet  Google Scholar 

  26. Nicholson J.A. (1957). The self-adjustement of populations to change. Cold Spring Harb. Symp. Quant. Biol. 22: 153

    Google Scholar 

  27. Packard N.H., Crutchfield J.P., Farmer J.D. and Shaw R.S. (1980). Geometry from a time series. Phy. Rev. Lett. 45: 712

    Article  Google Scholar 

  28. Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1988). Numerical Recipes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Schaffer W.M. (1984). Stretching and folding in lynx fur returns: evidence for a strange attractor in nature? Am. Nat. 124: 798

    Article  Google Scholar 

  30. Sinclair A.R.E., Gosline J.M., Holdsworth G., Krebs C.J., Boutin S., Smith J.N.M., Boonstra R. and Dale M. (1993). Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from the tree rings and ice cores. Am. Nat. 141: 173

    Article  Google Scholar 

  31. Sprott J.C. (1994). Some simple chaotic flows. Phys. Rev. E 50: 647

    Article  MathSciNet  Google Scholar 

  32. Upadhyay R.K., Jyengar S.R.K. and Rai V. (1998). Chaos: an ecological reality? Int. J. Bifurcat. Chaos 8: 1325

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Letellier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maquet, J., Letellier, C. & Aguirre, L.A. Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems. J. Math. Biol. 55, 21–39 (2007). https://doi.org/10.1007/s00285-007-0075-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0075-9

Keywords

Navigation