Skip to main content
Log in

Stationary multiple spots for reaction–diffusion systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we review analytical methods for a rigorous study of the existence and stability of stationary, multiple spots for reaction–diffusion systems. We will consider two classes of reaction–diffusion systems: activator–inhibitor systems (such as the Gierer–Meinhardt system) and activator–substrate systems (such as the Gray–Scott system or the Schnakenberg model). The main ideas are presented in the context of the Schnakenberg model, and these results are new to the literature. We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion constant of the activator. Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov–Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this analysis. Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, respectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals a condition for the maximal number of stable spots. Eigenvalues converging to zero are investigated using a projection similar to Liapunov–Schmidt reduction and conditions on the positions for stable spots are derived. The Green’s function of the Laplacian plays a central role in the analysis. The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson D.L., Maini P.K. and Sherratt J.A. (1998). Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J. Math. Biol. 37: 381–417

    Article  MATH  MathSciNet  Google Scholar 

  2. Castets V., Dulos E., Boissonade J. and De Kepper P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64: 2953–2956

    Article  Google Scholar 

  3. Crampin E.J., Gaffney E.A. and Maini P.K. (1999). Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61: 1093–1120

    Article  Google Scholar 

  4. Crampin, E.J., Gaffney, E.A., Maini, P.K.: Mode doubling and tripling in reaction–diffusion patterns on growing domains: a piece-wise linear model. J. Math. Biol. 44, 107–128, 1093–1120 (1999)

    Google Scholar 

  5. Dancer E.N. (2001). On stability and Hopf bifurcations for chemotaxis systems. Methods Appl. Anal. 8: 245–256

    MATH  MathSciNet  Google Scholar 

  6. De Kepper P., Castets V., Dulos E. and Boissonade J. (1991). Turing-type chemical pattern in the chlorite-iodide-malonic acid reaction. Phys. D 49: 161–169

    Article  Google Scholar 

  7. Doelman A., Gardner R.A. and Kaper T.J. (2001). Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J. 50: 443–507

    Article  MATH  MathSciNet  Google Scholar 

  8. Doelman A., Gardner A. and Kaper T.J. (1998). Stability analysis of singular patterns in the 1-D Gray–Scott model: a matched asymptotic approach. Phys. D 122: 1–36

    Article  MATH  MathSciNet  Google Scholar 

  9. Doelman, A., Gardner, A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray–Scott model. Mem. Am. Math. Soc. 155(737), xii+64 (2002)

  10. Doelman A., Kaper T. and Zegeling P.A. (1997). Pattern formation in the one-dimensional Gray–Scott model. Nonlinearity 10: 523–563

    Article  MATH  MathSciNet  Google Scholar 

  11. Dufiet V. and Boissonade J. (1992). Conventional and unconventional Turing patterns. J. Chem. Phys. 96: 664–673

    Article  Google Scholar 

  12. Ei S. (2002). The motion of weakly interacting pulses in reaction–diffusion systems. J. Dyn. Diff. Equ. 14: 85–87

    Article  MATH  MathSciNet  Google Scholar 

  13. Ei S., Nishiura Y. and Ueda K. (2001). 2n splitting or edge splitting: a manner of splitting in dissipative systems. Jpn J. Ind. Appl. Math. 18: 181–205

    Article  MATH  MathSciNet  Google Scholar 

  14. Fife, P.C.: Stationary patterns for reaction–diffusion systems. In: Nonlinear Diffusion. Research Notes in Math., vol. 14, pp. 81–121. Pitman, London (1977)

  15. Fife P.C. (1979). Large time behaviour of solutions of bistable nonlinear diffusion equations. Arch. Rat. Mech. Anal. 70: 31–46

    Article  MATH  MathSciNet  Google Scholar 

  16. Gidas B., Ni W.M. and Nirenberg L. (1981). Symmetry of positive solutions of nonlinear elliptic equations in R N. Adv. Math. Suppl. Stud. 7A: 369–402

    MathSciNet  Google Scholar 

  17. Gierer A. and Meinhardt H. (1972). A theory of biological pattern formation. Kybernetik (Berlin) 12: 30–39

    Article  Google Scholar 

  18. Gray P. and Scott S.K. (1983). Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38: 29–43

    Article  Google Scholar 

  19. Gray P. and Scott S.K. (1984). Autocatalytic reactions in the isothermal. continuous stirred tank reactor: oscillations and instabilites to the system A + 2B → 3B, BC. Chem. Eng. Sci. 39: 1087–1097

    Article  Google Scholar 

  20. Hale J.K., Peletier L.A. and Troy W.C. (2000). Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math. 61: 102–130

    Article  MATH  MathSciNet  Google Scholar 

  21. Hale J.K., Peletier L.A. and Troy W.C. (1999). Stability and instability of the Gray–Scott model: the case of equal diffusion constants. Appl. Math. Lett. 12: 59–65

    Article  MATH  MathSciNet  Google Scholar 

  22. Iron D., Wei J. and Winter M. (2004). Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 49: 358–390

    Article  MATH  MathSciNet  Google Scholar 

  23. Kolokolnikov T. and Ward M.J. (2003). Reduced wave Green’s functions and their effect on the dynamics of a spike for the Gierer–Meinhardt model. Eur. J. Appl. Math. 14: 513–545

    Article  MATH  MathSciNet  Google Scholar 

  24. Kolokolnikov T. and Ward M.J. (2004). Bifurcation of spike equilibria in the near-shadow Gierer–Meinhardt model. Discret. Contin. Dyn. Syst. Ser. B 4: 1033–1064

    Article  MATH  MathSciNet  Google Scholar 

  25. Kolokolnikov T., Ward M.J. and Wei J. (2005). The existence and stability of spike equilibria in the one- dimensional Gray–Scott model: the low-feed regime. Stud. Appl. Math. 115: 21–71

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolokolnikov T., Ward M.J. and Wei J. (2005). The existence and stability of spike equilibria in the one- dimensional Gray–Scott model: the pulse-splitting regime. Phys. D 202: 258–293

    Article  MATH  MathSciNet  Google Scholar 

  27. Kondo S. and Asai R. (1995). A viable reaction–diffusion wave on the skin of Pomacanthus, a marine Angelfish. Nature 376: 765–768

    Article  Google Scholar 

  28. Koch A.J. and Meinhardt H. (1994). Biological pattern formation from basic mechanisms to complex structures. Rev. Mod. Phys. 66: 1481–1507

    Article  Google Scholar 

  29. Kwong M.K. and Zhang L. (1991). Uniqueness of positive solutions of Δu + f(u) = 0 in an annulus. Diff. Integral Equ. 4: 583–599

    MATH  MathSciNet  Google Scholar 

  30. Lengyel I. and Epstein I.R. (1991). Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251: 650–652

    Article  Google Scholar 

  31. Lee K.J., McCormick W.D., Pearson J.E. and Swinney H.L. (1994). Experimental observation of self- replicating spots in a reaction–diffusion system. Nature 369: 215–218

    Article  Google Scholar 

  32. Lee K.J., McCormick W.D., Ouyang Q. and Swinney H.L. (1993). Pattern formation by interacting chemical fronts. Science 261: 192–194

    Article  Google Scholar 

  33. Levin S.A. (1992). The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  34. Madzvamuse A., Maini P.K. and Wathen A.J. (2005). A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J. Sci. Comput. 24: 247–262

    Article  MATH  MathSciNet  Google Scholar 

  35. Madzvamuse A., Wathen A.J. and Maini P.K. (2003). A moving grid finite element method applied to a model biological pattern generator. J. Comput. Phys. 190: 478–500

    Article  MATH  MathSciNet  Google Scholar 

  36. Maini P.K., Baker R.E. and Chuong C.M. (2006). The Turing model comes of molecular age. Science 314: 1397–1398

    Article  Google Scholar 

  37. Maini P.K., Painter K.J. and Chau H. (1997). Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93: 3601–3610

    Article  Google Scholar 

  38. Meinhardt H. (1982). Model of Biological Pattern Formation. Academic, London

    Google Scholar 

  39. Meinhardt H. (1995). The Algorithmic Beauty of Sea Shells. Springer, Berlin

    Google Scholar 

  40. Mimura, M.: Reaction–diffusion systems arising in biological and chemical systems: applications of singular limit procedures. In: Mathematical Aspects of Evolving Interfaces (Funchal, 2000). Lecture Notes in Mathematics, vol. 1812. Springer, Berlin (2003)

  41. Muratov C.B. and Osipov V.V. (2000). Static spike autosolitons in the Gray–Scott model. J. Phys. A Math. Gen. 33: 8893–8916

    Article  MathSciNet  Google Scholar 

  42. Muratov C.B. and Osipov V.V. (2002). Stability of the static spike autosolitons in the Gray–Scott model. SIAM J. Appl. Math. 62: 1463–1487

    Article  MATH  MathSciNet  Google Scholar 

  43. Murray J.D. (2003). Mathematical Biology II: Spatial Models and Biomedical Applications, Interdisciplinary Applied Mathematics, vol. 18. Springer, Heidelberg

    Google Scholar 

  44. Ni W.-M. (1998). Diffusion, cross-diffusion and their spike-layer steady-states. Not. Am. Math. Soc. 45: 9–18

    MATH  Google Scholar 

  45. Nishiura, Y.: Far-From-Equilibrium-Dynamics, Translations of Mathematical Monographs, vol. 209. AMS publications, Providence, Rhode Island (2002)

  46. Nishiura Y. (1982). Global structure of bifurcating solutions of some reaction–diffusion systems. SIAM J. Math. Anal. 13: 555–593

    Article  MATH  MathSciNet  Google Scholar 

  47. Nishiura Y. and Fujii H. (1987). Stability of singularly perturbed solutions to systems of reaction–diffusion equations. SIAM J. Math. Anal. 18: 1726–1770

    Article  MATH  MathSciNet  Google Scholar 

  48. Nishiura Y., Teramoto T. and Ueda K. (2003). Scattering and separators in dissipative systems. Phys. Rev. E 67(5): 56210

    Article  MathSciNet  Google Scholar 

  49. Nishiura Y. and Ueyama D. (1999). A skeleton structure of self-replicating dynamics. Phys. D 130: 73–104

    Article  MATH  Google Scholar 

  50. Nishiura Y. and Ueyama D. (2001). Spatio-temporal chaos for the Gray–Scott model. Phys. D 150: 137–162

    Article  MATH  Google Scholar 

  51. Ouyang Q. and Swinney H.L. (1991). Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352: 610–612

    Article  Google Scholar 

  52. Ouyang Q. and Swinney H.L. (1991). Transition to chemical turbulence. Chaos 1: 411–420

    Article  MATH  Google Scholar 

  53. Painter K.J., Maini P.K. and Othmer H.G. (1999). Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Nat. Acad. Sci. USA Dev. Biol. 96: 5549–5554

    Article  Google Scholar 

  54. Pearson J.E. (1993). Complex patterns in a simple system. Science 261: 189–192

    Article  Google Scholar 

  55. Pearson J.E. and Horsthemke W. (1989). Turing instabilities with nearly equal diffusion constants. J. Chem. Phys. 90: 1588–1599

    Article  MathSciNet  Google Scholar 

  56. Reynolds J., Pearson J. and Ponce-Dawson S. (1994). Dynamics of self-replicating patterns in reaction diffusion systems. Phys. Rev. Lett. 72: 2797–2800

    Article  Google Scholar 

  57. Reynolds J., Pearson J. and Ponce-Dawson S. (1997). Dynamics of self-replicating spots in reaction–diffusion systems. Phys. Rev. E 56: 185–198

    Article  MathSciNet  Google Scholar 

  58. Sandstede B. and Scheel A. (2005). Absolute inequalities of standing pulses. Nonlinearity 18: 331–378

    Article  MATH  MathSciNet  Google Scholar 

  59. Schnakenberg J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81: 389–400

    Article  MathSciNet  Google Scholar 

  60. Segel, L.A., Levin, S.A.: Appliations of nonlinear stability theory to the study of the effects of dispersion on predator–prey interactions. In: Piccirelli, R. (ed.) Selected Topics in Statistical Mechanics and Biophysics. Conference Proceedings no. 27. American Inst. Physics, New York (1976)

  61. Sick S., Reinker S., Timmer J. and Schlake T. (2006). WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314: 1447–1450

    Article  Google Scholar 

  62. Sun W., Ward M.J. and Russell R. (2005). The slow dynamics of two-spike solutions for the Gray–Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Sys. 4: 904–953

    Article  MATH  MathSciNet  Google Scholar 

  63. Takagi I. (1986). Point-condensation for a reaction–diffusion system. J. Diff. Equ. 61: 208–249

    Article  MATH  MathSciNet  Google Scholar 

  64. Turing A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237: 37–72

    Article  Google Scholar 

  65. Vastano J.A., Pearson J.E., Horsthemke W. and Swinney H.L. (1987). Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A 124: 320–324

    Article  Google Scholar 

  66. Vastano J.A., Pearson J.E., Horsthemke W. and Swinney H.L. (1988). Turing patterns in an open reactor. J. Chem. Phys. 88: 6175–6181

    Article  Google Scholar 

  67. Ward M.J. (2006). Asymptotic methods for reaction–diffusion systems: past and present. Bull. Math. Biol. 68: 1151–1167

    Article  Google Scholar 

  68. Wei J. (1999). On single interior spike solutions of the Gierer–Meinhardt system: uniqueness and spectrum estimates. Eur. J. Appl. Math. 10: 353–378

    Article  MATH  Google Scholar 

  69. Wei J. (1999). Existence, stability and metastability of point condensation patterns generated by Gray–Scott system. Nonlinearity 12: 593–616

    Article  MATH  MathSciNet  Google Scholar 

  70. Wei J. (2001). Pattern formations in two-dimensional Gray–Scott model: existence of single-spot solutions and their stability. Phys. D 148: 20–48

    Article  MATH  MathSciNet  Google Scholar 

  71. Ward M.J. and Wei J. (2002). The existence and stability of asymmetric spike patterns for the Schnakenberg model. Stud. Appl. Math. 109: 229–264

    Article  MATH  MathSciNet  Google Scholar 

  72. Ward M.J. and Wei J. (2003). Hopf bifurcations and oscillatory instabilities of solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci. 13: 209–264

    Article  MATH  MathSciNet  Google Scholar 

  73. Wei J. and Winter M. (1999). On the two-dimensional Gierer–Meinhardt system with strong coupling. SIAM J. Math. Anal. 30: 1241–1263

    Article  MATH  MathSciNet  Google Scholar 

  74. Wei J. and Winter M. (2000). Spikes for the two-dimensional Gierer–Meinhardt system: the strong coupling case. J. Diff. Equ. 178: 478–518

    Article  MathSciNet  Google Scholar 

  75. Wei J. and Winter M. (2001). Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case. J. Nonlinear Sci. 11: 415–458

    Article  MATH  MathSciNet  Google Scholar 

  76. Wei J. and Winter M. (2003). Existence and stability of multiple-spot solutions for the Gray–Scott model in \(\mathbb {R}^ 2\) Phys D 176: 147–180

    Article  MATH  MathSciNet  Google Scholar 

  77. Wei J. and Winter M. (2003). Asymmetric spotty patterns for the Gray–Scott model in R 2. Stud. Appl. Math. 110: 63–102

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Winter, M. Stationary multiple spots for reaction–diffusion systems. J. Math. Biol. 57, 53–89 (2008). https://doi.org/10.1007/s00285-007-0146-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0146-y

Keywords

Mathematics Subject Classfication (2000)

Navigation