Skip to main content

Advertisement

Log in

Stochastic properties of generalised Yule models, with biodiversity applications

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the trees produced by Yule models to be investigated. One of our methods is applicable to a broader class of evolutionary processes, namely the Bellman–Harris models. Our methods have many practical applications including biodiversity and conservation related problems. In this setting the methods can be used to characterise the expected rate of biodiversity loss for Yule trees, as well as the expected gain of including the phylogeny in conservation management. We briefly explore these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldous D.J.: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16(1), 23–34 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blum M., Francois O.: Which random processes describe the Tree of Life? A large-scale study of phylogenetic tree imbalance. Syst. Biol. 55(4), 685–691 (2006)

    Article  MathSciNet  Google Scholar 

  3. Crozier R.H.: Preserving the information content of species: Genetic diversity, phylogeny, and conservation worth. Annu. Rev. Ecol. Syst. 28, 243–268 (1997)

    Article  Google Scholar 

  4. Crump K.S., Mode C.J.: A general age-dependent branching process I. J. Math. Anal. Appl. 24, 494–508 (1968)

    Article  MATH  Google Scholar 

  5. Crump K.S., Mode C.J.: A general age-dependent branching process II. J. Math. Anal. Appl. 25, 8–17 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. Faith D.P.: Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992)

    Article  Google Scholar 

  7. Gernhard, T.: Stochastic models of speciation events in phylogenetic trees. Diplom Thesis, Technical University of Munich, Germany (2006)

  8. Gernhard, T.: The conditioned reconstructed process. J. Theor. Biol. (2008, in press)

  9. Gernhard T., Ford D., Vos R., Steel M.: Estimating the relative order of speciation or coalescence events on a given phylogeny. Evol. Bioinform. Online 2, 309–317 (2006)

    Google Scholar 

  10. Harding E.F.: The probabilities of rooted tree-shapes generated by random bifurcation. Adv. Appl. Probab. 3, 44–47 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hartmann, K., Mooers, A.O.: When should phylogenies guide conservation management? (in preparation)

  12. Hartmann K., Steel M.: Phylogenetic diversity: from combinatorics to ecology. In: Gascuel, O., Steel, M.(eds) Reconstructing Evolution—New Mathematical and Computational Advances, Oxford University Press, New York (2007)

    Google Scholar 

  13. Hartmann, K., Gernhard, T., Wong, D.: Sampling trees from evolutionary models. Systematic Biology (submitted)

  14. Jagers P.: Branching processes with biological applications. Wiley, New York (1975)

    MATH  Google Scholar 

  15. McKenzie A., Steel M.: Distributions of cherries for two models of trees. Math. Biosci. 164(1), 81–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mooers A.Ø., Heard S.B.: Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72(1), 31–54 (1997)

    Article  Google Scholar 

  17. Mooers A.O., Heard S.B., Chrostowski E.: Evolutionary heritage as a metric for conservation. In: Purvis, A., Brooks, T., Gittleman, J.(eds) Phylogeny and Conservation, pp. 120–138. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  18. Nee S., May R.M.: Extinction and the loss of evolutionary history. Science 278(5338), 692–694 (1997)

    Article  Google Scholar 

  19. Redding D., Hartmann K., Mimoto A., Bokal D., DeVos M., Mooers A.O.: The most “original species” often capture more phylogenetic diversity than expected. J. Theor. Biology, in press 251, 606–615 (2008)

    Article  Google Scholar 

  20. Sankaranarayanan G.: Branching Processes and its Estimation Theory. Wiley, New York (1989)

    MATH  Google Scholar 

  21. Semple C., Steel M.: Phylogenetics. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  22. Steel M.: Tools to construct and study big trees: A mathematical perspective. In: Hodkinson T.R., Parnell J.A. (eds.) Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa. CRC Press, USA (2006)

    Google Scholar 

  23. Steel M., McKenzie A.: Properties of phylogenetic trees generated by Yule-type speciation models. Math. Biosci. 170, 91–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Walters C.J.: Adaptive Management of Renewable Resources. Macmillan, New York (1986)

    Google Scholar 

  25. Yule G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Wllis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213, 21–87 (1924)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas Hartmann.

Additional information

T. Gernhard and K. Hartmann contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gernhard, T., Hartmann, K. & Steel, M. Stochastic properties of generalised Yule models, with biodiversity applications. J. Math. Biol. 57, 713–735 (2008). https://doi.org/10.1007/s00285-008-0186-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0186-y

Keywords

Mathematics Subject Classification (2000)

Navigation