Skip to main content
Log in

Weakly nonlinear analysis of a hyperbolic model for animal group formation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider an one-dimensional nonlocal hyperbolic model for group formation with application to self-organizing collectives of animals in homogeneous environments. Previous studies have shown that this model displays at least four complex spatial and spatiotemporal group patterns. Here, we use weakly nonlinear analysis to better understand the mechanisms involved in the formation of two of these patterns, namely stationary pulses and traveling trains. We show that both patterns arise through subcritical bifurcations from spatially homogeneous steady states. We then use these results to investigate the effect of two social interactions (attraction and alignment) on the structure of stationary and moving animal groups. While attraction makes the groups more compact, alignment has a dual effect, depending on whether the groups are stationary or moving. More precisely, increasing alignment makes the stationary groups compact, and the moving groups more elongated. Also, the results show the existence of a threshold for the total group density, above which, coordinated behaviors described by stationary and moving groups persist for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana M, Dossetti V, Huepe C, Kenke VM, Larralde H (2007) Phase transitions in systems of self-propelled agents and related network models. Phys Rev Lett 98(9): 095,702

    Article  Google Scholar 

  2. Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transitions between disordered and ordered foraging in pharaoh’s ants. Proc Natl Acad Sci USA 98(17): 9703–9706

    Article  Google Scholar 

  3. Bressloff PC (2004) Euclidean shift-twist symmetry in population models of self-aligning objects. SIAM J Appl Math 64: 1668–1690

    Article  MATH  MathSciNet  Google Scholar 

  4. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2001) Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex. Phil Trans R Soc Lond B 356: 299–330

    Article  Google Scholar 

  5. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312: 1402–1406

    Article  Google Scholar 

  6. Bullis HR (1961) Observations on the feeding behavior of white-tip sharks on schooling fishes. Ecology 42: 194–195

    Article  Google Scholar 

  7. Chaté H, Ginelli F, Grégoire G (2007) Comment on “phase transitions in systems of self-propelled agents and related network models”. Phys Rev Lett 99: 229,601

    Article  Google Scholar 

  8. Coullet P, Ioos G (1990) Instabilities of one-dimensional cellular patterns. Phys Rev Lett 64(8): 866–869

    Article  MATH  MathSciNet  Google Scholar 

  9. Couzin ID, Krause J, James R, Ruxton G, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218: 1–11

    Article  MathSciNet  Google Scholar 

  10. Cross MC, Hohenberg PC (1993) Pattern formation outside equilibrium. Rev Mod Phys 65(3): 851–1112

    Article  Google Scholar 

  11. Czirók A, Barabási AL, Vicsek T (1999) Collective motion of self-propelled particles: kinetic phase transition in one dimension. Phys Rev Lett 82(1): 209–212

    Article  Google Scholar 

  12. Czirók A, Stanley H, Vicsek T (1997) Spontaneously ordered motion of self-propelled particles. J Phys A Math Gen 30: 1375–1385

    Article  Google Scholar 

  13. Eftimie R, de Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal communication mechanisms. Proc Natl Acad Sci USA 104(17): 6974–6979

    Article  MATH  MathSciNet  Google Scholar 

  14. Eftimie R, de Vries G, Lewis MA, Lutscher F (2007) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69(5): 1537–1566

    Article  MATH  MathSciNet  Google Scholar 

  15. Flierl G, Grünbaum D, Levin S, Olson D (1999) From individuals to aggregations: the interplay between behavior and physics. J Theor Biol 196: 397–454

    Article  Google Scholar 

  16. Gazi V, Passino KM (2002) Stability analysis of swarms. In: Proceedings of American control conference on Anchorage, AK, pp 8–10

  17. Golubitsky M, Stewart I, Schaeffer DG (1988) Singularities and groups in bifurcation theory, vol II. Springer, Heidelberg

    Google Scholar 

  18. Grégoire G, Chaté H (2004) Onset of collective and cohesive motion. Phys Rev Lett 92(2): 025,702

    Article  Google Scholar 

  19. Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. J Theor Biol 182: 85–98

    Article  Google Scholar 

  20. Helbing D, Treiber M (1999) Numerical simulations of macroscopic traffic equations. Comput Sci Eng 1(5): 89–98

    Article  Google Scholar 

  21. Hillen T (1995) Nichtlineare hyperbolische systeme zur modellierung von ausbreitungsvorgängen und anwendung auf das turing modell. PhD Thesis, Universität Tübingen

  22. Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl 1: 409–433

    Article  MATH  MathSciNet  Google Scholar 

  23. Huth A, Wissel C (1994) The simulation of fish schools in comparison with experimental data. Ecol Model 75/76: 135–145

    Article  Google Scholar 

  24. Keener J (1988) Principles of applied mathematics. Addison-Wesley, Reading

    MATH  Google Scholar 

  25. Lutscher F (2002) Modeling alignment and movement of animals and cells. J Math Biol 45: 234–260

    Article  MATH  MathSciNet  Google Scholar 

  26. Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12: 619–640

    Article  MATH  MathSciNet  Google Scholar 

  27. Mallet-Paret J (1999) The fredholm alternative for functional differential equations of mixed type. J Dyn Differ Equ 11(1): 1–47

    Article  MATH  MathSciNet  Google Scholar 

  28. Matkowski BJ (1970) Nonlinear dynamic stability. SIAM J Appl Math 18: 872–883

    Article  MathSciNet  Google Scholar 

  29. Mirabet V, Auger P, Lett C (2007) Spatial structures in simulations of animal grouping. Ecol Model 201: 468–476

    Article  Google Scholar 

  30. Mogilner A, Edelstein-Keshet L (1996) Spatio-angular order in populations of self-aligning objects: formation of oriented patches. Physica D 89: 346–367

    Article  MATH  MathSciNet  Google Scholar 

  31. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38: 534–570

    Article  MATH  MathSciNet  Google Scholar 

  32. Murray JD (1984) Asymptotic analysis. Springer, Heidelberg

    MATH  Google Scholar 

  33. Newell AC, Passot T, Lega J (1993) Order parameter equations for patterns. Annu Rev Fluid Mech 25: 399–453

    Article  MathSciNet  Google Scholar 

  34. Niwa HS (1994) Self-organizing dynamical model of fish schooling. J Theor Biol 171: 123–136

    Article  Google Scholar 

  35. Okubo A, Grünbaum D, Edelstein-Keshet L (2001) The dynamics of animal grouping. In: Okubo A, Levin S (eds) Diffusion and ecological problems: modern perspectives. Springer, New York,, pp 197–237

    Google Scholar 

  36. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MATH  MathSciNet  Google Scholar 

  37. Pfistner B (1990) A one dimensional model for the swarming behavior of Myxobakteria. In: Alt W, Hoffmann G (eds) Biological motion, Lecture Notes on Biomathematics, vol 89. Springer, Heidelberg, pp 556–563

    Google Scholar 

  38. Pfistner B, Alt W (1990) A two dimensional random walk model for swarming behavior. In: Alt W, Hoffmann G (eds) Biological motion, Lecture Notes on Biomathematics, vol 89.. Springer, Heidelberg, pp 564–565

    Google Scholar 

  39. Reuter H, Breckling B (1994) Self organization of fish schools: an object-oriented model. Ecol Model 75(76): 147–159

    Article  Google Scholar 

  40. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. Comput Graph 21: 25–34

    Article  Google Scholar 

  41. Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  42. Springer S (1966) Some observations of the behavior of schools of fishes in the gulf of mexico and adjacent waters. Ecology 38: 166–171

    Article  Google Scholar 

  43. Stuart JT (1960) On the nonlinear mechanism of wave disturbances in stable and unstable parallel flows. part I. J Fluid Mech 9: 353–370

    Article  MATH  MathSciNet  Google Scholar 

  44. Topaz CM, Bertozzi AL (2004) Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J Appl Math 65: 152–174

    Article  MATH  MathSciNet  Google Scholar 

  45. Topaz CM, Bertozzi AL, Lewis MA (2006) A nonlocal continuum model for biological aggregation. Bull Math Biol 68: 1601–1623

    Article  MathSciNet  Google Scholar 

  46. Vabø R, Nøttestad L (1997) An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature. Fish Oceanogr 6: 155–171

    Article  Google Scholar 

  47. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6): 1226–1229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eftimie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftimie, R., de Vries, G. & Lewis, M.A. Weakly nonlinear analysis of a hyperbolic model for animal group formation. J. Math. Biol. 59, 37–74 (2009). https://doi.org/10.1007/s00285-008-0209-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0209-8

Keywords

Mathematics Subject Classification (2000)

Navigation