Skip to main content
Log in

Multiscale modelling and nonlinear simulation of vascular tumour growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the ulti-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3: 440–475

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Model Meth Appl Sci 12(5): 737–754

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA Math App Med Biol 22(2): 163–186

    Article  MATH  Google Scholar 

  4. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5): 857–900

    Article  MATH  Google Scholar 

  5. Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5): 905–915

    Article  Google Scholar 

  6. Araujo RP, McElwain DLS (2004) A history of the study of solid tumor growth: the contribution of mathematical modeling. Bull Math Biol 66(5): 1039–1091

    Article  MathSciNet  Google Scholar 

  7. Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J Appl Math 65: 1261–1284

    Article  MathSciNet  MATH  Google Scholar 

  8. Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J Appl Math 66(2): 447–467

    Article  MathSciNet  MATH  Google Scholar 

  9. Balding D, McElwain DLS (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114: 53–73

    Article  Google Scholar 

  10. Bartha K, Rieger H (2007) Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol 241(4): 903–918

    MathSciNet  Google Scholar 

  11. Byrne H, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20(4): 341–366

    Article  MathSciNet  MATH  Google Scholar 

  12. Byrne HM, Alarcón T, Owen MR, Webb SD, Maini PK (2006) Modeling aspects of cancer dynamics: a review. Phil Trans R Soc A 364(1843): 1563–1578

    Article  Google Scholar 

  13. Byrne HM, Chaplain MAJ (1995) Growth of non-necrotic tumours in the presence and absence of inhibitors. Math Biosci 130: 151–181

    Article  MATH  Google Scholar 

  14. Byrne HM, Chaplain MAJ (1996) Growth of necrotic tumours in the presence and absence of inhibitors. Math Biosci 135: 187–216

    Article  MATH  Google Scholar 

  15. Byrne HM, Chaplain MAJ (1998) Free boundary problems arising in models of tumour growth and development. Eur J Appl Math 8: 639–658

    Article  MathSciNet  Google Scholar 

  16. Carmeliet P (2005) Angiogenesis in life, disease, and medicine. Nature 438: 932–936

    Article  Google Scholar 

  17. Chaplain MAJ (1995) The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43: 387–402

    Article  Google Scholar 

  18. Chaplain MAJ, McDougall SR, Anderson ARA (2006) Mathematical modelling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8: 233–257

    Article  Google Scholar 

  19. Chomyak OG, Sidorenko MV (2001) Multicellular spheroids model in oncology. Exp Oncol 23: 236–241

    Google Scholar 

  20. Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J (2005) Morphological instability and cancer invasion. Clin Cancer Res 11(19): 6772–6779

    Article  Google Scholar 

  21. Cristini V, Li X, Lowengrub J, Wise S (2008) Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J Math Biol in press

  22. Cristini V, Lowengrub JS, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46: 191–224

    Article  MathSciNet  MATH  Google Scholar 

  23. Dickinson RB, Tranquillo RT (1993) A stochastic model for adhesion-mediated cell random motility and haptotaxis. J Math Biol 31: 563–600

    Article  MATH  Google Scholar 

  24. DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60: 15–37

    Article  Google Scholar 

  25. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JTA, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(27): 1222–1226

    Article  Google Scholar 

  26. Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Cristini V (2007) Computer simulations of glioma growth and morphology. NeuroImage 37(S1): S59–S70

    Article  Google Scholar 

  27. Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Can Res 66(3): 1597–1604

    Article  Google Scholar 

  28. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374

    Article  Google Scholar 

  29. Galaris D, Barbouti A, Korantzopoulos P (2006) Oxidative stress in hepatic ischemia–reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des 12(23): 2875–2890

    Article  Google Scholar 

  30. Gerlee P, Anderson ARA (2007) Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys Rev E 75: 0151,911

    Article  Google Scholar 

  31. Graziano L, Preziosi L (2007) Mechanics in tumor growth. In: Mollica F, Rajagopal KR, Preziosi L (eds) Modelling of Biological Materials. Birkhäuser, Boston, pp 267–328

    Google Scholar 

  32. Greenspan HP (1976) On the growth and stability of cell cultures and solid tumors. J Theor Biol 56(1): 229–242

    Article  MathSciNet  Google Scholar 

  33. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1): 57–70

    Article  Google Scholar 

  34. Hogea CS, Murray BT, Sethian JA (2006) Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J Math Biol 53(1): 86–134

    Article  MathSciNet  MATH  Google Scholar 

  35. Holash J, Weigand SJ, Yancopoulos GD (1999) New model of tumor-induced angiogenesis; dynamic balance between vessel regresion and growth mediated by angiopoietins and vegf. Oncogene 18: 5356–5362

    Article  Google Scholar 

  36. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 7(2): 134–153

    Article  Google Scholar 

  37. Kim JB (2005) Three-dimensional tissue culture models in canceriology. J Biomol Screen 15: 365–377

    Google Scholar 

  38. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104(24): 2981–2989

    Article  Google Scholar 

  39. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-d cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9: 273–285

    Article  Google Scholar 

  40. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3): 359–369

    Article  Google Scholar 

  41. Lee D, Rieger H (2006) Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96: 058,104

    Google Scholar 

  42. Li X, Cristini V, Nie Q, Lowengrub J (2007) Nonlinear three-dimensional simulation of solid tumor growth. Disc Dyn Contin Dyn Syst B 7: 581–604

    Article  MathSciNet  MATH  Google Scholar 

  43. Liotta LA, Clair T (2000) Checkpoint for invasion. Ann Ital Med Int 15(3): 195–198

    Google Scholar 

  44. Liotta LA, Stetler-Stevenson WG (1991) Tumor cell motility. Sem Canc Biol 2(2): 111–114

    Google Scholar 

  45. Macklin P, Lowengrub JS (2005) Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J Comput Phys 203(1): 191–220

    Article  MathSciNet  MATH  Google Scholar 

  46. Macklin P, Lowengrub JS (2006) An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J Comput Phys 215(2): 392–401

    Article  MathSciNet  MATH  Google Scholar 

  47. Macklin P, Lowengrub JS (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J Theor Biol 245(4): 677–704

    Article  MathSciNet  Google Scholar 

  48. Macklin P, Lowengrub JS (2008) A new ghost cell/level set method for moving boundary problems: Application to tumor growth. J Sci Comput (in press)

  49. Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49: 111–187

    Article  MathSciNet  MATH  Google Scholar 

  50. McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3): 564–589

    Article  MathSciNet  Google Scholar 

  51. McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4): 673–702

    Article  Google Scholar 

  52. Orme ME, Chaplain MAJ (1996) A mathematical model of vascular tumour growth and invasion. Math Comp Modell 23: 43–60

    Article  MATH  Google Scholar 

  53. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540

    Article  Google Scholar 

  54. Paweletz N, Knierim M (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9: 197–242

    Article  Google Scholar 

  55. Plank MJ, Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66: 1785–1819

    Article  MathSciNet  Google Scholar 

  56. Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(25): 437–443

    Article  Google Scholar 

  57. Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281: H1015–H1025

    Google Scholar 

  58. Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of vascular networks: role of the pressure response. Hypertension 38: 1476–1479

    Article  Google Scholar 

  59. Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77: 1017–1023

    Google Scholar 

  60. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardivasc Res 32: 654–667

    Google Scholar 

  61. Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular netwoks: theory and simulation. Am J Physiol Heart Circ Physiol 275(44): H349–H360

    Google Scholar 

  62. Quaranta V, Weaver AM, Cummings PT, Anderson ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357(2): 173–179

    Article  Google Scholar 

  63. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular cancer. SIAM Rev 49: 179–208

    Article  MathSciNet  MATH  Google Scholar 

  64. Sanga S, Sinek JP, Frieboes HB, Fruehauf JP, Cristini V (2006) Mathematical modeling of cancer progression and response to chemotherapy. Exp Rev Anticancer Ther 6(10): 1361–1376

    Article  Google Scholar 

  65. Sinek J, Frieboes H, Zheng X, Cristini V (2004) Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Biomed Microdev 6(4): 197–309

    Article  Google Scholar 

  66. Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2d and 3d vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Modell 41: 1137–1156

    Article  MathSciNet  MATH  Google Scholar 

  67. Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math Comp Model 44(1–): 96–123

    Article  MATH  Google Scholar 

  68. Thompson DW (1917) On Growth and Form. Cambridge University Press, Cambridge

    Google Scholar 

  69. Walles T, Weimer M, Linke K, Michaelis J, Mertsching H (2007) The potential of bioartificial tissues in oncology research and treatment. Onkologie 30: 388–394

    Article  Google Scholar 

  70. Welter M, Bartha K, Rieger H (2008) Emergent vascular network inhomogenities and resulting blood flow patterns in a growing tumor. J Theor Biol 250: 257–280

    Article  Google Scholar 

  71. Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull Math Biol 67(2): 211–259

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven McDougall or John Lowengrub.

Electronic supplementary material

The Below is the Electronic Supplementary Material.

ESM 1 (AVI 1867 kb)

ESM 2 (AVI 1203 kb)

ESM 3 (AVI 5244 kb)

ESM 4 (AVI 1924 kb)

ESM 5 (AVI 4590 kb)

ESM 6 (PDF 285 kb)

ESM 7 (PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macklin, P., McDougall, S., Anderson, A.R.A. et al. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009). https://doi.org/10.1007/s00285-008-0216-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0216-9

Keywords

Mathematics Subject Classification (2000)

Navigation