Skip to main content
Log in

Modelling cell migration strategies in the extracellular matrix

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM) is a highly organised structure with the capacity to direct cell migration through their tendency to follow matrix fibres, a process known as contact guidance. Amoeboid cell populations migrate in the ECM by making frequent shape changes and have minimal impact on its structure. Mesenchymal cells actively remodel the matrix to generate the space in which they can move. In this paper, these different types of movement are studied through simulation of a continuous transport model. It is shown that the process of contact guidance in a structured ECM can spatially organise cell populations. Furthermore, when combined with ECM remodelling, it can give rise to cellular pattern formation in the form of “cell-chains” or networks without additional environmental cues such as chemoattractants. These results are applied to a simple model for tumour invasion where it is shown that the interactions between invading cells and the ECM structure surrounding the tumour can have a profound impact on the pattern and rate of cell infiltration, including the formation of characteristic “fingering” patterns. The results are further discussed in the context of a variety of relevant processes during embryonic and adult stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1994) Molecular biology of the cell. Garland Publishing Inc, New York

    Google Scholar 

  2. Ambrosi D, Bussolino F, Preziosi L (2005) A review of vasculogenesis models. J Theor Med 6: 1–19

    MathSciNet  MATH  Google Scholar 

  3. Anderson ARA, Chaplain M, Newman E, Steele R, Thompson E (2000) Mathematical modelling of tumour invasion and metastasis. J Theor Med 2: 129–153

    MATH  Google Scholar 

  4. Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66: 1039–1091

    Article  MathSciNet  Google Scholar 

  5. Barocas V, Tranquillo R (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment and cell contact guidance. J Biomech Eng 119: 137–145

    Article  Google Scholar 

  6. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36: 1046–1069

    Article  Google Scholar 

  7. Chaplain M, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15: 1685–1734

    Article  MathSciNet  MATH  Google Scholar 

  8. Chauviere A, Hillen T, Preziosi L (2007) Modeling cell movement in anisotropic and heterogeneous network tissues. Networks Heterogeneous Media 2: 333–357

    MathSciNet  MATH  Google Scholar 

  9. Clatz O, Sermesant M, Bondiau P, Delingette H, Warfield S, Malandain G, Ayache N (2005) Realistic simulation of the 3d growth of brain tumours in mr images coupling diffusion with biomechanical deformation. IEEE Trans Med Imag 24: 1334–1345

    Article  Google Scholar 

  10. Dallon J, Sherratt J (2000) A mathematical model for spatially varying extracellular matrix alignment. SIAM J Appl Math 61: 506–527

    Article  MathSciNet  MATH  Google Scholar 

  11. Dallon JC, Sherratt JA (1998) A mathematical model for fibroblast and collagen orientation. Bull Math Biol 60: 101–129

    Article  MATH  Google Scholar 

  12. Dallon JC, Sherratt JA, Maini PK (1999) Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration. J Theor Biol 199: 449–471

    Article  Google Scholar 

  13. Dallon JC, Sherratt JA, Maini PK (2001) Modeling the effects of transforming growth factor-beta on extracellular matrix alignment in dermal wound repair. Wound Repair Regen 9: 278–286

    Article  Google Scholar 

  14. Dickinson R (1997) A model for cell migration by contact guidance. In: Alt W, Deutsch A, Dunn G (eds) Dynamics of cell and tissue motion. Basel, Birkhauser, pp 149–158

    Google Scholar 

  15. Dickinson R (2000) A generalized transport model for biased cell migration in an anisotropic environment. J Math Biol 40: 97–135

    Article  MathSciNet  MATH  Google Scholar 

  16. Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101: 1–14

    Article  Google Scholar 

  17. Francis K, Palsson B, Donahue J, Fong S, Carrier E (2002) Murine Sca-1(+)/Lin(−) cells and human KG1a cells exhibit multiple pseudopod morphologies during migration. Exp Hematol 30: 460–463

    Article  Google Scholar 

  18. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16: 14–23

    Article  Google Scholar 

  19. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374

    Article  Google Scholar 

  20. Friedl P, Maaser K, Klein CE, Niggemann B, Krohne G, Zanker KS (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57: 2061–2070

    Google Scholar 

  21. Friedl P, Zanker KS, Brocker EB (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43: 369–378

    Article  Google Scholar 

  22. Gaudet C, Marganski WA, Kim S, Brown CT, Gunderia V, Dembo M, Wong JY (2003) Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys J 85: 3329–3335

    Article  Google Scholar 

  23. Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and non- local models and the effect of adhesion. J Theor Biol. 250: 684–704. doi:10.1016/j.jtbi.2007.10.026

    Article  Google Scholar 

  24. Guido S, Tranquillo RT (1993) A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci 105: 317–331

    Google Scholar 

  25. Hay E editor (1991) Cell Biology of Extracellular Matrix. Plenum Press, New York, 2nd edition

  26. Hillen T (2002) Hyperbolic models for chemosensitive movement. Math Models Methods Appl Sci 12: 1007–1034

    Article  MathSciNet  MATH  Google Scholar 

  27. Hillen T (2006) M5 mesoscopic and macroscopic models for mesenchymal motion. J Math Biol 53: 585–616

    Article  MathSciNet  MATH  Google Scholar 

  28. Horstmann D, Painter K, Othmer H (2004) Aggregation under local reinforcement: from lattice to continuum. Eur J Appl Math 15: 545–576

    Article  MathSciNet  MATH  Google Scholar 

  29. Hughes L, Archer C, Gwynn A (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. a polarised light and scanning electron microscope study and review. Eur Cells Mater 9: 68–84

    Google Scholar 

  30. Imayama S, Braverman IM (1989) A hypothetical explanation for the aging of skin. Chronologic alteration of the three-dimensional arrangement of collagen and elastic fibers in connective tissue. Am J Pathol 134: 1019–1025

    Google Scholar 

  31. Jacques TS, Relvas JB, Nishimura S, Pytela R, Edwards GM, Streuli CH, ffrench Constant C (1998) Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development 125: 3167–3177

    Google Scholar 

  32. Kaufman LJ, Brangwynne CP, Kasza KE, Filippidi E, Gordon VD, Deisboeck TS, Weitz DA (2005) Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J 89: 635–650

    Article  Google Scholar 

  33. Kulesa PM, Fraser SE (1998) Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev Biol 204: 327–344

    Article  Google Scholar 

  34. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359–369

    Article  Google Scholar 

  35. Locascio A, Nieto MA (2001) Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. Curr Opin Genet Dev 11: 464–469

    Article  Google Scholar 

  36. MacArthur BD, Please CP, Pettet GJ (2005) A mathematical model of dynamic glioma-host interactions: receptor-mediated invasion and local proteolysis. Math Med Biol 22: 247–264

    Article  MATH  Google Scholar 

  37. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83: 337–376

    Google Scholar 

  38. McDougall S, Dallon J, Sherratt J, Maini P (2006) Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Phil Trans R Soc Lond A 364: 1385–1405

    Article  MathSciNet  Google Scholar 

  39. Mogilner A, Edelstein-Keshet L (1996) Spatio-angular order in populations of self-aligning objects: formation of oriented patches. Physica D 89: 346–367

    Article  MathSciNet  MATH  Google Scholar 

  40. Mogilner A, Edelstein-Keshet L, Ermentrout G (1996) Selecting a common direction. ii. peak-like solutions representing total alignment of cell clusters. J Math Biol 34: 811–842

    MathSciNet  MATH  Google Scholar 

  41. Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path?. Curr Opin Cell Biol 11: 614–621

    Article  Google Scholar 

  42. Murray J (2003) Mathematical biology II: spatial models and biochemical applications, 3rd edn. Springer, New York

    Google Scholar 

  43. Newgreen DF (1989) Physical influences on neural crest cell migration in avian embryos: contact guidance and spatial restriction. Dev Biol 131: 136–148

    Article  Google Scholar 

  44. Ohtsuka A, Piazza AJ, Ermak TH, Owen RL (1992) Correlation of extracellular matrix components with the cytoarchitecture of mouse Peyer’s patches. Cell Tissue Res 269: 403–410

    Article  Google Scholar 

  45. Olsen L, Maini P, Sherratt J, Marchant B (1998) Simple modelling of extracellular matrix alignment in dermal wound healing. J Theor Med 1: 172–192

    Google Scholar 

  46. Olsen L, Maini P, Sherratt J, Dallon J (1999) Mathematical modelling of anisotropy in fibrous connective tissue. Math Biosci 158: 145–170

    Article  MATH  Google Scholar 

  47. Othmer H, Dunbar S, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MathSciNet  MATH  Google Scholar 

  48. Painter K, Horstmann D, Othmer H (2003) Localization in lattice and continuum models of reinforced random walks. Appl Math Lett 16: 375–381

    Article  MathSciNet  MATH  Google Scholar 

  49. Perumpanani A, Simmons D, Gearing A, Miller K, Ward G, Norbury J, Schneemann M, Sherratt J (1998) Does extracellular matrix mediated chemotaxis promote or impede cell migration?. Proc R Soc Lond B 265: 2347–2352

    Article  Google Scholar 

  50. Perumpanani AJ, Byrne HM (1999) Extracellular matrix concentration exerts selection pressure on invasive cells. Eur J Cancer 35: 1274–1280

    Article  Google Scholar 

  51. Price S, Burnet N, Donovan T, Green H, Pena A, Antoun N, Pickard J, Carpenter T, Gillard J (2003) Diffusion tensor imaging of brain tumours at 3t: a potential tool for assessing white matter tract invasion?. Clin Radiol 58: 455–462

    Article  Google Scholar 

  52. Swanson KR, Alvord ECJ, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86: 14–18

    Article  Google Scholar 

  53. Thorogood P, Wood A (1987) Analysis of in vivo cell movement using transparent tissue systems. J Cell Sci Suppl 8: 395–413

    Google Scholar 

  54. Tsuji T (1982) Scanning electron microscopy of dermal elastic fibres in transverse section. Br J Dermatol 106: 545–550

    Article  Google Scholar 

  55. Wang HB, Dembo M, Hanks SK, Wang Y (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98: 11295–11300

    Article  Google Scholar 

  56. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62: 6278–6288

    Google Scholar 

  57. Weiner R, Schmitt B, H P (1997) Rowmap–a row-code with krylov techniques for large stiff odes. Appl Numer Math 25: 303–319

    Article  MathSciNet  MATH  Google Scholar 

  58. Wilkinson PC, Lackie JM (1983) The influence of contact guidance on chemotaxis of human neutrophil leukocytes. Exp Cell Res 145: 255–264

    Article  Google Scholar 

  59. Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P (2003a) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102: 3262–3269

    Article  Google Scholar 

  60. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003b) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277

    Article  Google Scholar 

  61. Wood A (1988) Contact guidance on microfabricated substrata: the response of teleost fin mesenchyme cells to repeating topographical patterns. J Cell Sci 90: 667–681

    Google Scholar 

  62. Wood A, Thorogood P (1984) An analysis of in vivo cell migration during teleost fin morphogenesis. J Cell Sci 66: 205–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Painter.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MPG 2,645 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Painter, K.J. Modelling cell migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009). https://doi.org/10.1007/s00285-008-0217-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0217-8

Mathematics Subject Classification (2000)

Navigation