Skip to main content
Log in

Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosi D, Guana F (2007) Stress modulated growth. Math Mech Solids 12(3): 319–342

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40(12): 1297–1316

    Article  MathSciNet  Google Scholar 

  3. Ambrosi D, Mollica F (2004) The role of stress in the growth of a multicell spheroid. J Math Biol 48(5): 477–499

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosi D, Preziosi L (2008) Cell adhesion mechanisms and elasto-viscoplastic mechanics of tumours. Biomech Model Mechanobiol (to appear)

  5. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Models Methods Appl Sci 12(5): 737–754

    Article  MATH  MathSciNet  Google Scholar 

  6. Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66(5): 1039–1091

    Article  MathSciNet  Google Scholar 

  7. Araujo RP, McElwain DLS (2004) A linear-elastic model of anisotropic tumour growth. Eur J Appl Math 15(3): 365–384

    Article  MATH  MathSciNet  Google Scholar 

  8. Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues. I. A general formulation. SIAM J Appl Math 65(4): 1261–1284 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues. II. Solutions to the biphasic equations for a multicell spheroid. SIAM J Appl Math 66(2): 447–467 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  10. Astanin S, Preziosi L (2007) Multiphase models of tumour growth. In: Bellomo N, Chaplain M, DeAngelis E (eds) Selected topics on cancer modelling: genesis—evolution—immune competition—therapy. Birkhäuser, Basel

    Google Scholar 

  11. Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Nat Acad Sci USA 97: 4005–4010

    Article  Google Scholar 

  12. Behravesh E, Timmer MD, Lemoine JJ, Liebschner MA, Mikos AG (2002) Evaluation of the in vitro degradation of macroporous hydrogels using gravimetry, confined compression testing, and microcomputed tomography. Biomacromolecules 3: 1263–1270

    Article  Google Scholar 

  13. Bertuzzi A, Fasano A, Gandolfi A (2004/2005) A free boundary problem with unilateral constraints describing the evolution of a tumor cord under the influence of cell killing agents. SIAM J Math Anal 36(3): 882–915 (electronic)

    Article  MathSciNet  Google Scholar 

  14. Bertuzzi A, Fasano A, Gandolfi A (2005) A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math Models Methods Appl Sci 15(11): 1735–1777

    Article  MATH  MathSciNet  Google Scholar 

  15. Breward CJW, Byrne HM, Lewis CE (2001) Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. Eur J Appl Math 12(5): 529–556

    Article  MATH  MathSciNet  Google Scholar 

  16. Breward CJW, Byrne HM, Lewis CE (2002) The role of cell–cell interactions in a two-phase model for avascular tumour growth. J Math Biol 45(2): 125–152

    Article  MATH  MathSciNet  Google Scholar 

  17. Breward CJW, Byrne HM, Lewis CE (2003) A multiphase model describing vascular tumour growth. Bull Math Biol 65: 609–640

    Article  Google Scholar 

  18. Byrne HM, King JR, McElwain DLS, Preziosi L (2003) A two-phase model of solid tumour growth. Appl Math Lett 16(4): 567–573

    Article  MATH  MathSciNet  Google Scholar 

  19. Byrne HM, Preziosi L (2004) Modeling solid tumor growth using the theory of mixtures. Math Med Biol 20: 341–366

    Article  Google Scholar 

  20. Canetta E, Leyrat A, Verdier C, Duperray A (2005) Measuring cell viscoelastic properties using a force-spectrometer: influence of the protein–cytoplasm interactions. Biorheology 42(5): 321–333

    Google Scholar 

  21. Chaplain M, Graziano L, Preziosi L (2006) Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math Med Biol 23: 197–229

    Article  MATH  Google Scholar 

  22. De Masi A, Luckhaus S, Presutti E (2007) Two scales hydrodynamic limit for a model of malignant tumour cells. Ann IHP Prob Stat 43(3): 257–279

    MATH  Google Scholar 

  23. DiMilla PA, Kenneth B, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60(1): 15–37

    Article  Google Scholar 

  24. DiMilla PA, Stone JA, Quinn JA, Albelda SA, Lauffenburger DA (1993) Maximal migration of human smooth muscle cells fibronectin and type iv collagen occurs at an intermediate attachment strength. J Cell Biol 122: 729–737

    Article  Google Scholar 

  25. Forgacs G, Foty RA, Shafrir Y, Steinberg MS (1998) Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74: 2227–2234

    Article  Google Scholar 

  26. Franks SJ, Byrne HM, King JR, Underwood JCE, Lewis CE (2003) Modelling the early growth of ductal carcinoma in situ of the breast. J Math Biol 47(5): 424–452

    Article  MATH  MathSciNet  Google Scholar 

  27. Franks SJ, Byrne HM, Mudhar HS, Underwood JCE, Lewis CE (2003) Mathematical modelling of comedo ductal carcinoma in situ of the breast. Math Med Biol 20: 277–308

    Article  MATH  Google Scholar 

  28. Franks SJ, King JR (2003) Interactions between a uniformly proliferating tumor and its surrounding. Uniform material properties. Math Med Biol 20: 47–89

    Article  MATH  Google Scholar 

  29. Fung YC (1993) Biomechanics: mechanical Properties of living tissues. Springer, Heidelberg

    Google Scholar 

  30. Graziano L, Preziosi L (2007) Mechanics in tumour growth. In: Mollica F, Preziosi L, Rajagopal KR (eds) Modeling of biological materials. Birkhäuser, Basel, pp 267–328

    Google Scholar 

  31. Greenspan HP (1976) On the growth and stability of cell-cultures and solid tumours. J Theor Biol 56: 229–242

    Article  MathSciNet  Google Scholar 

  32. Gu WY, Yao H, Huang CY, Cheung HS (2003) New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech 36: 593–598

    Article  Google Scholar 

  33. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Mod Meth Appl Sci 12: 407–430

    Article  MATH  MathSciNet  Google Scholar 

  34. Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step-change in blood flow. Biomech Model Mechanobiol 2: 109–126

    Article  Google Scholar 

  35. Iordan A, Duperray A, Verdier C (2008) A fractal approach to the rheology of concentrated cell suspensions. Phys Rev E 77: 011911

    Article  Google Scholar 

  36. Iredale JP (2007) Models of liver fibrosis: exploring the dynamic nature of inflammationa and repair in a solid organ. J Clin Invest 117(3): 539–548

    Article  Google Scholar 

  37. Johnson PRA (2001) Two scales hydrodynamic limit for a model of malignant tumour cells. Clin Exp Pharm Physiol 28: 233–236

    Article  Google Scholar 

  38. Lanza V, Ambrosi D, Preziosi L (2006) Exogenous control of vascular network formation in vitro: a mathematical model. Netw Heterog Media 1(4): 621–637 (electronic)

    MATH  MathSciNet  Google Scholar 

  39. Liotta LA, Kohn EC (2007) The microenvironment of the tumor–host interface. Nature 411: 375–379

    Article  Google Scholar 

  40. Newby AC, Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190: 300–309

    Article  Google Scholar 

  41. Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131(4): 611–620

    Google Scholar 

  42. Pujuguet PP, Hammann A, Moutet M, Samuel JL, Martin F, Martin M (1996) Expression of fibronectin eda+ and edb+ isoforms by human and experimental colorectal cancer. Am J Patho 148: 579–592

    Google Scholar 

  43. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540

    Article  Google Scholar 

  44. Preziosi L (ed) (2003) Cancer modelling and simulation. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Boca Raton/FL

  45. Preziosi L, Farina A (2001) On Darcy’s law for growing porous media. Int J Nonlinear Mech 37: 485–491

    Article  Google Scholar 

  46. Rao IJ, Humphrey JD, Rajagopal KR (2003) Biological growth and remodeling: a uniaxial example with possible application to tendons and ligaments. CMES 4: 439–455

    MATH  Google Scholar 

  47. Sun M, Graham JS, Hegedus B, Marga F, Zhang Y, Forgacs G, Grandbois M (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89: 4320–4329

    Article  Google Scholar 

  48. Tosin A (2008) Multiphase modeling and qualitative analysis of the growth of tumor cords. Netw Heterog Media 3: 43–83

    MATH  MathSciNet  Google Scholar 

  49. Truskey GA, Yuan F, Katz DF (2004) Transport phenomena in biological systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  50. Winters BS, Shepard SR, Foty RA (2005) Biophysical measurement of brain tumor cohesion. Int J Cancer 114: 371–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Preziosi.

Electronic supplementary material

The Below are the Electronic Supplementary Materials.

ESM 1 (AVI 1041 kb)

ESM 2 (AVI 2483 kb)

ESM 3 (AVI 3213 kb)

ESM 4 (AVI 1661 kb)

ESM 5 (AVI 1627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preziosi, L., Tosin, A. Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58, 625–656 (2009). https://doi.org/10.1007/s00285-008-0218-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0218-7

Mathematics Subject Classification (2000)

Navigation