Skip to main content
Log in

Adaptive conformational sampling based on replicas

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Computer simulations of biomolecules such as molecular dynamics simulations are limited by the time scale of conformational rearrangements. Several sampling techniques are available to search the multi-minima free energy landscape but most efficient, time-dependent methods do generally not produce a canonical ensemble. A sampling algorithm based on a self-regulating ladder of searching copies in the dihedral subspace is developped in this paper. The learning process using short- and long-term memory functions allows an efficient search in phase space while combining a deterministic dynamics and stochastic swaps with the searching copies conserves a canonical limit. The sampling efficiency and accuracy are indicated by comparing the ansatz with conventional molecular dynamics and replica exchange simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels C, Karplus M (1997) Probability distribution for complex systems: adaptive umbrella sampling of the potential energy. J Comput Chem 18: 80–865

    Article  Google Scholar 

  • Berg BA, Neuhaus T (1991) Multicanonical algorithms for first order phase transitions. Phys Lett B B267: 53–249

    Google Scholar 

  • Beveridge DL, Barreiro G, Byun KS, Case DA, Cheatham TE III, Dixit SB, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Seibert E, Sklenar H, Stoll G, Thayer KM, Varnai P, Young MA (2004) Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides: I Research design, Informatics, and results on CpG steps. Biophys J 87: 3799–3813

    Article  Google Scholar 

  • Birkhoff G (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17: 656660

    Google Scholar 

  • Bitetti-Putzer R, Dinner AR, Yang W, Karplus M (2006) Conformational sampling via a self-regulating effective energy surface. J Chem Phys 124: 174901

    Article  Google Scholar 

  • Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for β hairpin foding from combined parallel tempering and metadynamics. J Am Chem Soc 128: 13435–13441

    Article  Google Scholar 

  • Bussi G, Laio A, Parrinello M (2006) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96: 090601

    Article  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Maerz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8 University of California, San Francisco

  • Chen J, Im W, Brooks CL III (2005) Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J Comput Chem 26: 78–1565

    Article  Google Scholar 

  • Curuksu J, Zacharias M (2009) Enhanced conformational sampling of nucleic acids by an Hamiltonian replica exchange molecular dynamics approach. J Chem Phys 130: 10411

    Article  Google Scholar 

  • Curuksu J (2009) Conformational sampling by molecular mechanics and dynamics simulations applied to the flexibility of nucleic acids. Dissertation, Jacobs University

  • Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115: 83–9169

    Article  Google Scholar 

  • Djuranovic D, Hartmann B (2004) DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations. Biopolymers 73: 356–368

    Article  Google Scholar 

  • Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipse. IEEE Trans Pattern Analy Mach Intell 21: 446–480

    Article  Google Scholar 

  • Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J Chem Phys 116: 9058–9067

    Article  Google Scholar 

  • Gao YQ, Zang L (2006) On the enhanced sampling over energy barriers in molecular dynamics simulations. J Chem Phys 125: 114103

    Article  Google Scholar 

  • Glover F (1989) Tabu Search - Part I. ORSA J Comput 1: 190–206

    Article  MathSciNet  MATH  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120: 29–11919

    Article  Google Scholar 

  • Hansmann UH (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281: 140–150

    Article  Google Scholar 

  • Henin J, Fiorin G, Chipot C, Klein ML (2010) Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput 6: 35–47

    Article  Google Scholar 

  • Huber T, Torda AE, Van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J CAMD 8: 695–708

    Google Scholar 

  • Kannan S, Zacharias M (2009) Folding simulations of Trp-cage mini protein in explicit solvent using biasing potential replica-exchange molecular dynamics simulations. Proteins 76: 60–448

    Article  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13: 21–1011

    Article  Google Scholar 

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99: 6–12562

    Article  Google Scholar 

  • Leach AR (1996) Molecular modelling. Principles and applications. Addison Wesley, Singapore, pp 356–358

    Google Scholar 

  • Maragakis P, Spichty M, Karplus M (2006) Optimal estimates of free energies from multi-state nonequilibrium work data. Phys Rev Lett 96: 100602

    Article  Google Scholar 

  • Marsili S, Barducci A, Chelli R, Procacci P, Schettino V (2006) Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. J Phys Chem 110: 3–14011

    Google Scholar 

  • Mesirov JP, Schulten K, Sumners DW (1996) Mathematical applications to biomolecular structure and dynamics, IMA volumes in mathematics and its applications. Springer, New York pp 218–247

    Google Scholar 

  • Neidigh J, Fesinmeyer R, Andersen N (2002) Designing a 20-residue protein. Nat Struct Biol 9: 30–425

    Article  Google Scholar 

  • Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE 3rd, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92: 3817–3829

    Article  Google Scholar 

  • Ripoll D, Vila J, Scheraga H (2004) Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH. J Mol Biol 339: 25–915

    Article  Google Scholar 

  • Roitberg AE, Okur A, Simmerling C (2007) Coupling of replica exchange simulations to a non-Boltzmann structure reservoir. J Phys Chem 111: 2415–2418

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23: 327–341

    Article  Google Scholar 

  • Thirumalai D (1995) From minimal models to real proteins: time scales for protein folding kinetics. J Phys I France 5: 1457–1467

    Article  Google Scholar 

  • Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78: 3908

    Article  Google Scholar 

  • Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of state. Phys Rev Lett 86: 3–2050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Curuksu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curuksu, J. Adaptive conformational sampling based on replicas. J. Math. Biol. 64, 917–931 (2012). https://doi.org/10.1007/s00285-011-0432-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0432-6

Keywords

Mathematics Subject Classification (2000)

Navigation