Skip to main content
Log in

Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Gene expression at the single-cell level incorporates reaction mechanisms which are intrinsically stochastic as they involve molecular species present at low copy numbers. The dynamics of these mechanisms can be described quantitatively using stochastic master-equation modelling; in this paper we study a generic gene-expression model of this kind which explicitly includes the representations of the processes of transcription and translation. For this model we determine the generating function of the steady-state distribution of mRNA and protein counts and characterise the underlying probability law using a combination of analytic, asymptotic and numerical approaches, finding that the distribution may assume a number of qualitatively distinct forms. The results of the analysis are suitable for comparison with single-molecule resolution gene-expression data emerging from recent experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington, DC

    MATH  Google Scholar 

  • Ackers G, Johnson A, Shea M (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci USA 79: 1129–1133

    Article  Google Scholar 

  • Bailey N (1964) The elements of stochastic processes with applications to the natural sciences. Wiley, New York

    MATH  Google Scholar 

  • Belle A, Tanay A, Bitincka L, Shamir R, O’Shea E (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA 103: 13004–13009

    Article  Google Scholar 

  • Berg O (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol 71: 587–603

    Article  Google Scholar 

  • Bernstein J, Khodursky A, Lin P, Lin-Chao S, Cohen S (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99: 9697–9702

    Article  Google Scholar 

  • Blake W, Kaern M, Cantor C, Collins J (2003) Noise in eukaryotic gene expression. Nature 422: 633–637

    Article  Google Scholar 

  • Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440: 358–362

    Article  Google Scholar 

  • Cheong R, Paliwal S, Levchenko A (2010) Models at the single cell level. Wiley Interdiscip Rev Syst Biol Med 2: 34–48

    Article  Google Scholar 

  • Coulon A, Gandrillon O, Beslon G (2010) On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Syst Biol 4: 2

    Article  Google Scholar 

  • Cox D, Miller H (1977) The theory of stochastic processes. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Davidson E, Rast J, Oliveri P, Ransick A, Calestani C, Yuh C, Minokawa T, Amore G, Hinman V, Arenas-Mena C et al (2002) A genomic regulatory network for development. Science 295: 1669–1678

    Article  Google Scholar 

  • Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186

    Article  Google Scholar 

  • Friedman N, Cai L, Xie X (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97: 168,302

    Article  Google Scholar 

  • Gadgil C, Lee C, Othmer H (2005) A stochastic analysis of first-order reaction networks. B Math Biol 67: 901–946

    Article  MathSciNet  Google Scholar 

  • García-Martínez J, González-Candelas F, Pérez-Ortín J (2007) Common gene expression strategies revealed by genome-wide analysis in yeast. Genome Biol 8: R222

    Article  Google Scholar 

  • Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123: 1025–1036

    Article  Google Scholar 

  • Griffith J (1968a) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol 20: 202–208

    Article  Google Scholar 

  • Griffith J (1968b) Mathematics of cellular control processes. II. Positive feedback to one gene. J Theor Biol 20: 209–216

    Article  Google Scholar 

  • Gurland J (1958) A generalized class of contagious distributions. Biometrics 14: 229–249

    Article  MATH  Google Scholar 

  • Hornos J, Schultz D, Innocentini G, Wang J, Walczak A, Onuchic J, Wolynes P (2005) Self-regulating gene: an exact solution. Phys Rev E 72: 051,907

    Article  MathSciNet  Google Scholar 

  • Innocentini G, Hornos J (2007) Modeling stochastic gene expression under repression. J Math Biol 55: 413–431

    Article  MathSciNet  MATH  Google Scholar 

  • Iyer-Biswas S, Hayot F, Jayaprakash C (2009) Stochasticity of gene products from transcriptional pulsing. Phys Rev E 79: 031,911

    Article  Google Scholar 

  • Johnson N, Kotz S, Kemp A (2005) Univariate discrete distributions, 3rd edn. Wiley-Interscience, London

    Book  MATH  Google Scholar 

  • Johnson W (2002) The curious history of Faà di Bruno’s formula. Am Math Mon 109: 217–234

    Article  MATH  Google Scholar 

  • Kendall D (1949) Stochastic processes and population growth. J Roy Stat Soc B 11: 230–282

    MathSciNet  Google Scholar 

  • Larson D, Singer R, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19: 630–637

    Article  Google Scholar 

  • Lee T, Rinaldi N, Robert F, Odom D, Bar-Joseph Z, Gerber G, Hannett N, Harbison C, Thompson C, Simon I et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804

    Article  Google Scholar 

  • Lestas I, Paulsson J, Ross N, Vinnicombe G (2008) Noise in gene regulatory networks. IEEE T Circuits-I 53: 189–200

    Google Scholar 

  • Lewin B (2000) Genes VII. Oxford University Press, Oxford

    Google Scholar 

  • Lu P, Vogel C, Wang R, Yao X, Marcotte E (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25: 117–124

    Article  Google Scholar 

  • McAdams H, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94: 814–819

    Article  Google Scholar 

  • McAdams H, Arkin A (1999) It is a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15: 65–69

    Article  Google Scholar 

  • Neyman J (1939) On a new class of “contagious” distributions, applicable in entomology and bacteriology. Ann Math Stat 10: 35–57

    Article  MATH  Google Scholar 

  • Ozbudak E, Thattai M, Kurtser I, Grossman A, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31: 69–73

    Article  Google Scholar 

  • Paszek P (2007) Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function. B Math Biol 69: 1567–1601

    Article  MathSciNet  MATH  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418

    Article  Google Scholar 

  • Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2: 157–175

    Article  Google Scholar 

  • Paulsson J, Ehrenberg M (2000) Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys Rev Lett 84: 5447–5450

    Article  Google Scholar 

  • Peccoud J, Ycart B (1995) Markovian modeling of gene-product synthesis. Theor Popul Biol 48: 222–234

    Article  MATH  Google Scholar 

  • Press W, Teukolsky S, Vetterling W, Flannery B (2007) Numerical recipes: the art of scientific computing. Cambridge university press, Cambridge

    MATH  Google Scholar 

  • Raj A, van Oudenaarden A (2009) Single-molecule approaches to stochastic gene expression. Annu Rev Biophys 38: 255–270

    Article  Google Scholar 

  • Raj A, Peskin C, Tranchina D, Vargas D, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4: e309

    Article  Google Scholar 

  • Raser J, O’Shea E (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811–1814

    Article  Google Scholar 

  • Shahrezaei V, Swain P (2008a) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105: 17,256

    Article  Google Scholar 

  • Shahrezaei V, Swain P (2008b) The stochastic nature of biochemical networks. Curr Opin Biotechnol 19: 369–374

    Article  Google Scholar 

  • Shea M, Ackers G (1985) The OR control system of bacteriophage lambda. A physical–chemical model for gene regulation. J Mol Biol 181: 211–230

    Article  Google Scholar 

  • Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68

    Article  Google Scholar 

  • Singh A, Hespanha J (2007) Stochastic analysis of gene regulatory networks using moment closure. In: Proceedings of the American control conference

  • Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294: 525–540

    Article  Google Scholar 

  • Taniguchi Y, Choi P, Li G, Chen H, Babu M, Hearn J, Emili A, Xie X (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538

    Article  Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98: 151588,598

    Article  Google Scholar 

  • Tomioka R, Kimura H, J Kobayashi T, Aihara K (2004) Multivariate analysis of noise in genetic regulatory networks. J Theor Biol 229: 501–521

    Article  Google Scholar 

  • Tomlin C, Axelrod J (2007) Biology by numbers: mathematical modelling in developmental biology. Nat Rev Genet 8: 331–340

    Article  Google Scholar 

  • Tyson J, Chen K, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221–231

    Article  Google Scholar 

  • van Kampen N (2006) Stochastic processes in physics and chemistry. Elsevier, New York

    Google Scholar 

  • Wang Y, Liu C, Storey J, Tibshirani R, Herschlag D, Brown P (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99: 5860–5865

    Article  Google Scholar 

  • Xie X, Choi P, Li G, Lee N, Lia G (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys 37: 417–444

    Article  Google Scholar 

  • Yu J, Xiao J, Ren X, Lao K, Xie X (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311: 1600–1603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Bokes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokes, P., King, J.R., Wood, A.T.A. et al. Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64, 829–854 (2012). https://doi.org/10.1007/s00285-011-0433-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0433-5

Keywords

Mathematics Subject Classification (2000)

Navigation