Skip to main content
Log in

Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We briefly review hyperbolic and kinetic models for self-organized biological aggregations and traffic-like movement. We begin with the simplest models described by an advection-reaction equation in one spatial dimension. We then increase the complexity of models in steps. To this end, we begin investigating local hyperbolic systems of conservation laws with constant velocity. Next, we proceed to investigate local hyperbolic systems with density-dependent speed, systems that consider population dynamics (i.e., birth and death processes), and nonlocal hyperbolic systems. We conclude by discussing kinetic models in two spatial dimensions and their limiting hyperbolic models. This structural approach allows us to discuss the complexity of the biological problems investigated, and the necessity for deriving complex mathematical models that would explain the observed spatial and spatiotemporal group patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt W (1980) Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 9: 147–177

    Article  MathSciNet  MATH  Google Scholar 

  • Angelis ED, Delitala M, Marasco A, Romano A (2003) Bifurcation analysis for a mean field modeling of tumor and immune system competition. Math Comput Model 37: 1131–1142

    Article  MATH  Google Scholar 

  • Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transitions between disordered and ordered foraging in pharaoh’s ants. Proc Natl Acad Sci USA 98(17): 9703–9706

    Article  Google Scholar 

  • Bellomo N, Delitala M (2008) From the mathematical kinetic, and stochastic game theory to modeling mutations, onset, progression and immune competition of cancer cells. Phys Life Rev 5: 183–206

    Article  Google Scholar 

  • Bellomo N, Forni G (2008) Complex multicellular systems and immune competition: new paradigms looking for a mathematical theory. Curr Top Dev Biol 81: 485–502

    Article  Google Scholar 

  • Bellomo N, Firmani B, Guerri L (1999) Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor–immune cells competition. Appl Math Lett 12: 39–44

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Angelis ED, Preziosi L (2003) Multiscale modeling and mathematical problems related to tumor evolution and medical therapy. J Theor Med 5(2): 111–136

    Article  MATH  Google Scholar 

  • Bellomo N, Bellouquid A, Nieto J, Soler J (2007) Multicellular growing systems: hyperbolic limits towards macroscopic description. Math Model Methods Appl Sci 17: 1675–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Li N, Maini P (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Model Methods Appl Sci 18(4): 593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Bianca C, Delitala M (2009) Complexity analysis and mathematical tools towards the modelling of living systems. Phys Life Rev 6: 144–175

    Article  Google Scholar 

  • Bellomo N, Bellouquid A, Nieto J, Soler J (2010) Complexity and mathematical tools toward the modeling of multicellular growing systems. Math Comput Model 51: 441–451

    Article  MathSciNet  MATH  Google Scholar 

  • Berg H, Brown D (1972) Chemotaxis in Escherichia coli. Analysis by three-dimensional tracking. Nature 239: 500–504

    Article  Google Scholar 

  • Bertotti M, Delitala M (2008) Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Anal Real World Appl 9: 183–196

    Article  MathSciNet  MATH  Google Scholar 

  • Bonilla L, Soler J (2001) High field limit for the Vlasov–Poisson–Fokker–Plank system: a comparison of different perturbation methods. Math Model Methods Appl Sci 11: 1457–1681

    Article  MathSciNet  MATH  Google Scholar 

  • Börner U, Deutsch A, Reichenbach H, Bär M (2002) Rippling patterns in aggregates of myxobacteria arise from cell–cell collisions. Phys Rev Lett 89:078,101

    Google Scholar 

  • Börner U, Deutsch A, Bär M (2006) A generalized discrete model linking rippling pattern formation and individual cell reversal statistics in colonies of myxobacteria. Phys Biol 3: 138–146

    Article  Google Scholar 

  • Bournaveas N, Calvez V, Gutiérrez S, Perthame B (2008) Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates. Commun Part Diff Equ 33(1): 79–95

    Article  MATH  Google Scholar 

  • Brazzoli I, Angelis E, Jabin PE (2010) A mathematical model of immune competition related to cancer dynamics. Math Methods Appl Sci 33: 733–750

    MathSciNet  MATH  Google Scholar 

  • Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312: 1402–1406

    Article  Google Scholar 

  • Burger M, Capasso V, Morale D (2007) On an aggregation model with long and short range interactions. Nonlinear Anal Real World Appl 8: 939–958

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg S, Iannelli M (1985) Separable models in age-dependent population dynamics. J Math Biol 22: 145–173

    Article  MathSciNet  MATH  Google Scholar 

  • Carbonaro B, Giordano C (2005) A second step towards mathematical models in psychology: a stochastic description of human feelings. Math Comput Model 41: 587–614

    Article  MathSciNet  MATH  Google Scholar 

  • Carillo J, D’Orsogna M, Panferov V (2009) Double milling in self-propelled swarms from kinetic theory. Kinet Relat Models 2: 363–378

    Article  MathSciNet  Google Scholar 

  • Carillo J, Fornasier M, Rosado J, Toscani G (2010) Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J Math Anal 42: 218–236

    Article  MathSciNet  Google Scholar 

  • Chauviere A, Brazzoli I (2006) On the discrete kinetic theory for active particles. Mathematical tools. Math Comput Model 43: 933–944

    Article  MathSciNet  MATH  Google Scholar 

  • Chavanis PH (2008) Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Phys A 387: 5716–5740

    Article  MathSciNet  Google Scholar 

  • Chavanis PH (2010) A stochastic Keller–Segel model of chemotaxis. Commun Nonlinear Sci Numer Simulat 15: 60–70

    Article  MathSciNet  MATH  Google Scholar 

  • Chavanis PH, Sire C (2007) Kinetic and hydrodynamic models of chemotactic aggregation. Phys A 384: 199–222

    Article  Google Scholar 

  • Chowdhury D, Schadschneider A, Katsuhiro N (2005) Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys Life Rev 2(4): 318–352

    Article  Google Scholar 

  • Chuang YL, D’Orsogna M, Marthaler D, Bertozzi A, Chayes L (2007) State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys D 232: 33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Codling E, Plank M, Benhamou S (2008) Random walk models in biology. J Royal Soc Interface 5(25): 813–834

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton G, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218: 1–11

    Article  MathSciNet  Google Scholar 

  • Degond P, Motsch S (2008) Large scale dynamics of the persistent turning walker model of fish behavior. J Stat Phys 131: 989–1021

    Article  MathSciNet  MATH  Google Scholar 

  • Deisboeck T, Berens M, Kansal A, Torquato S (2001) Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif 34: 115–134

    Article  Google Scholar 

  • Dolak Y, Schmeiser C (2005) Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J Math Biol 51: 595–615

    Article  MathSciNet  MATH  Google Scholar 

  • Edelstein-Keshet L, Watmough J, Grünbaum D (1998) Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J Math Biol 36(6): 515–549

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R (2008) Modeling group formation and activity patterns in self-organizing communities of organisms. PhD thesis, University of Alberta, Alberta

  • Eftimie R, de Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal communication mechanisms. Proc Natl Acad Sci USA 104(17): 6974–6979

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA, Lutscher F (2007) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69(5): 1537–1566

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, de Vries G, Lewis M (2009) Weakly nonlinear analysis of a hyperbolic model for animal group formation. J Math Biol 59: 37–74

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, Bramson J, Earn D (2010) Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma. J Theor Biol 265: 467–480

    Article  Google Scholar 

  • Eftimie R, Bramson J, Earn D (2011) Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol 73(1): 2–32

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in E. coli. A paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2): 362–394

    Article  MathSciNet  MATH  Google Scholar 

  • Farnsworth A (2005) Flight calls and their value for future ornitological studies and conservation research. Auk 122(3): 733–746

    Article  Google Scholar 

  • Fetecau R (2011) Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic model. Math Model Methods Appl Sci (to appear)

  • Fetecau R, Eftimie R (2010) An investigation of a nonlocal hyperbolic model for self-organization of biological groups. J Math Biol 61(4): 545–579

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet F, Laurencot P, Perthame B (2005) Derivation of hyperbolic models for chemosensitive movement. J Math Biol 50(2): 189–207

    Article  MathSciNet  MATH  Google Scholar 

  • Geigant E, Stoll M (2003) Bifurcation analysis of an orientational aggregation model. J Math Biol 46: 537–563

    Article  MathSciNet  MATH  Google Scholar 

  • Geigant E, Ladizhansky K, Mogilner A (1998) An integrodifferential model for orientational distributions of F-actin in cells. SIAM J Appl Math 59(3): 787–809

    Article  MathSciNet  Google Scholar 

  • Goldstein S (1951) On diffusion by discontinuous movements and the telegraph equation. Q J Mech Appl Math 4: 129–156

    Article  MATH  Google Scholar 

  • Grünbaum D (1999) Advection-diffusion equations for generalized tactic searching behaviors. J Math Biol 38: 169–194

    Article  MathSciNet  MATH  Google Scholar 

  • Grünbaum D, Okubo A (1994) Modelling social animal aggregations. In: Levin SA (eds) Frontiers in mathematical biology, Lecture notes in biomathematics, vol 100. Springer, Berlin Heidelberg, pp 296–325

    Google Scholar 

  • Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. J Theor Biol 182: 85–98

    Article  Google Scholar 

  • Gyllenberg M, Webb G (1990) A nonlinear structured population model of tumor growth with quiescence. J Math Biol 28: 671–694

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler K (1988) Hyperbolic travelling fronts. Proc Edinb Math Soc 31: 89–97

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler K (1989) Pair formation in age-structured populations. Acta Appl Math 14: 91–102

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler K (1994) Reaction-telegraph equations with density-dependent coefficients. In: Partial differential equations. Models in physics and biology. Mathematical Research, vol 82. Akademie-Verlag, Berlin, pp 152–158

  • Hadeler K (1994) Travelling fronts for correlated random walks. Can Appl Math Q 2: 27–43

    MathSciNet  MATH  Google Scholar 

  • Hadeler K (1996) Spatial epidemic spread by correlated random walk, with slow infectives. In: Jarvis R (ed) Proceedings of the thirteenth Dundee Conference, pp 18–32

  • Hadeler K (1996) Traveling epidemic waves and correlated random walks. In: Martelli M, Cooke K, Cumberbatch E, Tang B, Thieme H (eds) Differential equations and applications to biology and industry. Proceedings of the Claremont International Conference, pp 145–156

  • Hadeler K (1998) Nonlinear propagation in reaction transport systems. Differential equations with applications to biology. Fields Institute Communications, American Mathematical Society, Providence, pp 251–257

  • Hadeler K (1999) Reaction transport systems in biological modelling. Mathematics inspired by biology. Lecture notes in mathematics, Springer, Berlin, pp 95–150

  • Hadeler K (2000) Reaction transport equations in biological modeling. Math Comput Model 31(4–5): 75–81

    Article  Google Scholar 

  • Hadeler K (2008) Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts. J Math Sci 149(6): 1658–1678

    Article  MathSciNet  Google Scholar 

  • Hadeler K, Hillen T, Lutscher F (2004) The Langevin or Kramers approach to biological modeling. Math Model Methods Appl Sci 14(10): 1561–1583

    Article  MathSciNet  MATH  Google Scholar 

  • Hager MC, Helfman GS (1991) Safety in numbers: shoal size choice by minnows under predator threat. Behav Ecol Sociobiol 29: 271–276

    Article  Google Scholar 

  • Hasimoto H (1974) Exact solution of a certain semi-linear system of partial differential equations related to a migrating predation problem. Proc Japan Acad Ser A Math Sci 50: 623–627

    MathSciNet  MATH  Google Scholar 

  • Helbing D (1992) A fluid dynamic model for the movement of pedestrians. Complex Syst 6: 391–415

    MathSciNet  MATH  Google Scholar 

  • Helbing D (1996) Gas-kinetic derivation of Navier–Stokes-like traffic equations. Phys Rev E 53: 2366–2381

    Article  MathSciNet  Google Scholar 

  • Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73: 1067–1141

    Article  Google Scholar 

  • Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5): 4282–4286

    Article  Google Scholar 

  • Helbing D, Schweitzer F, Keltsch J, Molnar P (1997) Active walker model for the formation of human and animal trail systems. Phys Rev E 56: 2527–2539

    Article  Google Scholar 

  • Helbing D, Monar P, Farkas I, Bolay K (2001) Self-organizing pedestrian movement. Environ Plan B Plan Des 28: 361–383

    Article  Google Scholar 

  • Helbing D, Hennecke A, Shvetsov V, Treiber M (2002) Micro- and macro-simulation of freeway traffic. Math Comput Model 35(5–6): 517–547

    Article  MathSciNet  MATH  Google Scholar 

  • Helbing D, Johansson A, Al-Abideen HZ (2007) Dynamics of crowds: an empirical study. Phys Rev E 75:046,109

    Google Scholar 

  • Hillen T (1995) Nichtlineare hyperbolische systeme zur modellierung von ausbreitungsvorgängen und anwendung auf das turing modell. PhD thesis, Universität Tübingen

  • Hillen T (1996) A Turing model with correlated random walk. J Math Biol 35: 49–72

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (1996) Qualitative analysis of hyperbolic random walk systems. Technical report, SFB 382, Report No. 43

  • Hillen T (1997) Invariance principles for hyperbolic random walk systems. J Math Anal Appl 210: 360–374

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2002) Hyperbolic models for chemosensitive movement. Math Model Methods Appl Sci 12(7): 1–28

    Article  MathSciNet  Google Scholar 

  • Hillen T (2006) M 5 mesoscopic and macroscopic models for mesenchymal motion. J Math Biol 53(4): 585–616

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2010) Existence theory for correlated random walks on bounded domains. Can Appl Math Q (CAMQ) 18(1): 1–40

    MathSciNet  MATH  Google Scholar 

  • Hillen T, Hadeler K (2005) Hyperbolic systems and transport equations in mathematical biology. In: (eds) Analysis and numerics for conservation laws.. Springer, Berlin, pp 257–279

    Chapter  Google Scholar 

  • Hillen T, Levine H (2003) Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D. Z Angew Math Phys 54: 1–30

    Article  MathSciNet  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity jump process. SIAM J Appl Math 61: 751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl 1: 409–433

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes EE (1993) Are diffusion models too simple? A comparison with telegraph models of invasion. Am Nat 142: 779–795

    Article  Google Scholar 

  • Hughes R (2002) A continuum theory for the flow of pedestrians. Transp Res B 36: 507–535

    Article  Google Scholar 

  • Hunter JR (1969) Communication of velocity changes in jack mackerel (Trachurus Symmetricus) schools. Anim Behav 17: 507–514

    Article  Google Scholar 

  • Hutchinson J, Waser P (2007) Use, misuse and extensions of “ideal gas” models of animal encounter. Biol Rev 82(3): 335–359

    Article  Google Scholar 

  • Igoshin O, Mogilner A, Welch R, Kaiser D, Oster G (2001) Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci USA 98: 14913–14918

    Article  Google Scholar 

  • Igoshin OA, Oster G (2004) Rippling of myxobacteria. Math Biosci 188: 221–233

    Article  MathSciNet  MATH  Google Scholar 

  • Igoshin OA, Welch R, Kaiser D, Oster G (2004) Waves and aggregation patterns in myxobacteria. Proc Natl Acad Sci USA 101: 4256–4261

    Article  Google Scholar 

  • Inaba H (1990) Threshold and stability results for an age-structured epidemic model. J Math Biol 28: 411–434

    Article  MathSciNet  MATH  Google Scholar 

  • Jäger E, Segel L (1992) On the distribution of dominance in populations of social organisms. SIAM J Appl Math 52(5): 1442–1468

    Article  MathSciNet  MATH  Google Scholar 

  • Kac M (1974) A stochastic model related to the telegrapher’s equation. Rocky Mt J Math 4: 497–509

    Article  MATH  Google Scholar 

  • Kang K, Perthame B, Stevens A, Velázquez J (2009) An integro-differential equation model for alignment and orientational aggregation. J Diff Equ 246: 1387–1421

    Article  MATH  Google Scholar 

  • Keller E, Segel L (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26: 399–415

    Article  Google Scholar 

  • Kolev M (2003) Mathematical modeling of the competition between acquired immunity and cancer. Int J Math Comput Sci 13(3): 289–296

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov A, Petrovsky I, Piscounov N (1937) Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univ Bull Math 1: 1–25

    Google Scholar 

  • Larkin R, Szafoni R (2008) Evidence for widely dispersed birds migrating together at night. Integr Comparative Biol 48(1): 40–49

    Article  Google Scholar 

  • LeVeque R (1992) Numerical methods for conservation laws. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Leverentz A, Topaz C, Bernoff A (2009) Asymptotic dynamics of attractive–repulsive swarms. SIAM J Appl Dyn Syst 8(3): 880–908

    Article  MathSciNet  MATH  Google Scholar 

  • Levine H, Rappel WJ, Cohen I (2000) Self-organization in systems of self-propelled particles. Phys Rev E 63:017101

    Google Scholar 

  • Lewis MA (1994) Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistent “waves” of damage. Theor Popul Biol 45: 277–312

    Article  MATH  Google Scholar 

  • Lighthill M, Whitham G (1955) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc Lond Ser A 229(1178): 317–345

    Article  MathSciNet  MATH  Google Scholar 

  • Lika K, Hallam T (1999) Traveling wave solutions of a nonlinear reaction-advection equation. J Math Biol 38: 346–358

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher F (2003) A model for speed adaptation of individuals and existence of weak solutions. Eur J Appl Math 14: 291–311

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12: 619–640

    Article  MathSciNet  MATH  Google Scholar 

  • Makino T, Perthame B (1990) Sur le solutions à symétrie sphérique de l’équation d’Euler-Poisson pour l’évolution d’étoiles gazeuses. Japan J Appl Math 7: 165–170

    Article  MathSciNet  MATH  Google Scholar 

  • Marsan GA, Bellomo N, Egidi M (2008) Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinet Relat Models 1: 249–278

    Article  MathSciNet  MATH  Google Scholar 

  • Mickens R (1988) Exact solutions to a population model: the logistic equation with advection. SIAM Rev 30(4): 629–633

    Article  MathSciNet  MATH  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (1995) Selecting a common direction. I. How orientational order can arise from simple contact responses between interacting cells. J Math Biol 33: 619–660

    Article  MathSciNet  MATH  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38: 534–570

    Article  MathSciNet  MATH  Google Scholar 

  • Mogilner A, Edelstein-Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47: 353–389

    Article  MathSciNet  MATH  Google Scholar 

  • Needham D, Leach J (2008) The evolution of travelling wave-fronts in a hyperbolic Fisher model. I. The traveling wave theory. IMA J Appl Math 73: 158–198

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62: 1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Parrish JK (1999) Using behavior and ecology to exploit schooling fishes. Environ Biol Fish 55: 157–181

    Article  Google Scholar 

  • Parrish JK, Keshet LE (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99–101

    Article  Google Scholar 

  • Partridge B (1982) Structure and function of fish schools. Sci Am 246(6): 114–123

    Article  Google Scholar 

  • Pauls J (1984) The movement of people in buildings and design solutions for means of egress. Fire Technol 20: 27–47

    Article  Google Scholar 

  • Payne H (1971) Models of freeway traffic and control. In: Mathematical models of public systems, vol 28. Simulation Council, La Jolla, pp 51–61

  • Perthame B (2004) Mathematical tools for kinetic equations. Bull Am Math Soc (New Series) 41(2): 205–244

    Article  MathSciNet  MATH  Google Scholar 

  • Perthame B (2004) PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl Math 49(6): 539–564

    Article  MathSciNet  MATH  Google Scholar 

  • Pfistner B (1990) A one dimensional model for the swarming behavior of Myxobacteria. In: Alt W, Hoffmann G (eds) Biological motion. Lecture notes on biomathematics, vol 89. Springer, Berlin, pp 556–563

    Google Scholar 

  • Pfistner B (1995) Simulation of the dynamics of Myxobacteria swarms based on a one-dimensional interaction model. J Biol Syst 3: 579–588

    Article  Google Scholar 

  • Pomeroy H, Heppner F (1992) Structure of turning in airborne Rock Dove (Columba Livia) flocks. Auk 109: 256–267

    Google Scholar 

  • Schneirla T (1944) A unique case of circular milling in ants, considered in relation to trail following and the general problem of orientation. Am Museum Novitates 1253: 1–26

    Google Scholar 

  • Schütz G (2001) Exactly solvable models for many-body systems far from equilibrium. In: Phase transitions and critical phenomena, vol 19. Academic Press, London, pp 1–251

  • Schwetlick H (2000) Travelling fronts for multidimensional nonlinear transport equations. Ann Institut Henri Poincare 17(4): 523–550

    Article  MathSciNet  MATH  Google Scholar 

  • Segel LA (1977) A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J Appl Math 32: 653–665

    Article  MATH  Google Scholar 

  • Simpson SJ, McCaffery AR, Hägele BF (1999) A behavioural analysis of phase change in the desert locust. Biol Rev 74: 461–480

    Article  Google Scholar 

  • Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38(1/2): 196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Soll D, Wessels D (1998) Motion analysis of living cells. Wiley, New York

    Google Scholar 

  • Stroock D (1974) Some stochastic processes which arise from a model of the motion of a bacterium. Probab Theory Relat Fields 28: 305–315

    MATH  Google Scholar 

  • Takken W (1999) Chemical signals affecting mosquito behaviour. Invertebr Reprod Dev 36(1–3): 67–71

    Article  Google Scholar 

  • Topaz CM, Bertozzi AL (2004) Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J Appl Math 65: 152–174

    Article  MathSciNet  MATH  Google Scholar 

  • Vauchelet N (2010) Numerical simulation of a kinetic model for chemotaxis. Kinet Relat Models 3(3): 501–528

    Article  MathSciNet  MATH  Google Scholar 

  • Venuti F, Bruno L, Bellomo N (2007) Crowd dynamics on a moving platform: mathematical modelling and application to lively footbridges. Math Comput Model 45(3-4): 252–269

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson S (2004) Basking sharks (Cetorhinus maximus) schooling in the southern Gulf of Maine. Fish Oceanogr 13(4): 283–286

    Article  Google Scholar 

  • Zemskov E, Kassner K, Tsyganov M, Hauser M (2009) Wavy fronts in reaction-diffusion systems with cross advection. Eur Phys J B 72: 457–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca Eftimie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftimie, R. Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65, 35–75 (2012). https://doi.org/10.1007/s00285-011-0452-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0452-2

Keywords

Mathematics Subject Classification (2000)

Navigation