Skip to main content
Log in

Multiscale stochastic modelling of gene expression

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Stochastic phenomena in gene regulatory networks can be modelled by the chemical master equation for gene products such as mRNA and proteins. If some of these elements are present in significantly higher amounts than the rest, or if some of the reactions between these elements are substantially faster than others, it is often possible to reduce the master equation to a simpler problem using asymptotic methods. We present examples of such a procedure and analyse the relationship between the reduced models and the original.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington

    MATH  Google Scholar 

  • Berg O (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol 71: 587–603

    Article  Google Scholar 

  • Berg O, Blomberg C (1977) Mass action relations in vivo with application to the lac operon. J Theor Biol 67: 523–533

    Article  Google Scholar 

  • Bernstein J, Khodursky A, Lin P, Lin-Chao S, Cohen S (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99: 9697–9702

    Article  Google Scholar 

  • Blake W, Kaern M, Cantor C, Collins J (2003) Noise in eukaryotic gene expression. Nature 422: 633–637

    Article  Google Scholar 

  • Bokes P, King J, Wood A, Loose M (2011) Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J Math Biol. doi:10.1007/s00285-011-0433-5

  • Breuer H, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, New York

    MATH  Google Scholar 

  • Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440: 358–362

    Article  Google Scholar 

  • Cao Y, Gillespie D, Petzold L (2005) The slow-scale stochastic simulation algorithm. J Chem Phys 122: 014,116

    Google Scholar 

  • Carrier G, Pearson C (1988) Partial differential equations: theory and technique, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  • Cooley J, Lewis P, Welch P (1970) The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine and Laplace transforms. J Sound Vib 12: 315–337

    Article  MATH  Google Scholar 

  • Davies B, Martin B (1979) Numerical inversion of the Laplace transform: a survey and comparison of methods. J Comput Phys 33: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Dubner H, Abate J (1968) Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J Assoc Comput Mach 15: 115–123

    Article  MathSciNet  MATH  Google Scholar 

  • E W, Liu D, Vanden-Eijnden E (2005a) Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math 58: 1544–1585

    Article  MathSciNet  MATH  Google Scholar 

  • E W, Liu D, Vanden-Eijnden E (2005b) Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J Chem Phys 123: 194,107

    Article  Google Scholar 

  • E W, Liu D, Vanden-Eijnden E (2007) Response to “Comment on ‘Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates’ [J Chem Phys 123:194107 (2005)]”. J Chem Phys 126:137,102

    Google Scholar 

  • Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186

    Article  Google Scholar 

  • Enver T, Heyworth C, Dexter T (1998) Do stem cells play dice?. Blood 92: 348–351

    Google Scholar 

  • Feller W (1951) Two singular diffusion problems. Ann Math 54: 173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman N, Cai L, Xie X (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97: 168,302

    Article  Google Scholar 

  • Gardiner C (1985) Handbook of stochastic methods. Springer, New York

    Google Scholar 

  • Gibbs A, Su F (2002) On choosing and bounding probability metrics. Int Stat Rev 70: 419–435

    Article  MATH  Google Scholar 

  • Gillespie D (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115: 1716–1733

    Article  Google Scholar 

  • Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123: 1025–1036

    Article  Google Scholar 

  • Haseltine E, Rawlings J (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys 117: 6959–6969

    Article  Google Scholar 

  • Hume D (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96: 2323–2328

    Google Scholar 

  • Keener J, Sneyd J (2008) Mathematical physiology: cellular physiology. Springer, Berlin

    Google Scholar 

  • Kevorkian J, Cole J (1981) Perturbation methods in applied mathematics. Springer, New York

    MATH  Google Scholar 

  • Khasminskii R, Yin G (2005) Limit behavior of two-time-scale diffusions revisited. J Differ Equ 212: 85–113

    Article  MathSciNet  MATH  Google Scholar 

  • Larson D, Singer R, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19: 630–637

    Article  Google Scholar 

  • Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier A, Kimmel M (2006) Transcriptional stochasticity in gene expression. J Theor Biol 238: 348–367

    Article  MathSciNet  Google Scholar 

  • Mastny E, Haseltine E, Rawlings J (2007) Two classes of quasi-steady-state model reductions for stochastic kinetics. J Chem Phys 127: 094,106

    Google Scholar 

  • McAdams H, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94: 814–819

    Article  Google Scholar 

  • McAdams H, Arkin A (1998) Simulation of prokaryotic genetic circuits. Annu Rev Biophys Biomol Struct 27: 199–224

    Article  Google Scholar 

  • Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124: 044,104

    Article  Google Scholar 

  • Murray J (2003) Mathematical biology. Springer, Berlin

    MATH  Google Scholar 

  • Ozbudak E, Thattai M, Kurtser I, Grossman A, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31: 69–73

    Article  Google Scholar 

  • Pahlajani C, Atzberger P, Khammash M (2010) Stochastic reduction method for biological chemical kinetics using time-scale separation. J Theor Biol 272: 96–112

    Article  Google Scholar 

  • Paszek P (2007) Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function. B Math Biol 69: 1567–1601

    Article  MathSciNet  MATH  Google Scholar 

  • Paulsson J, Ehrenberg M (2000) Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys Rev Lett 84: 5447–5450

    Article  Google Scholar 

  • Paulsson J, Berg O, Ehrenberg M (2000) Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 97: 7148–7153

    Article  Google Scholar 

  • Peccoud J, Ycart B (1995) Markovian modeling of gene-product synthesis. Theor Popul Biol 48: 222–234

    Article  MATH  Google Scholar 

  • Peleš S, Munsky B, Khammash M (2006) Reduction and solution of the chemical master equation using time scale separation and finite state projection. J Chem Phys 125: 204,104caron;

    Google Scholar 

  • Raj A, van Oudenaarden A (2009) Single-molecule approaches to stochastic gene expression. Annu Rev Biophys 38: 255–270

    Article  Google Scholar 

  • Raj A, Peskin C, Tranchina D, Vargas D, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4: e309

    Article  Google Scholar 

  • Rao C, Wolf D, Arkin A (2002) Control, exploitation and tolerance of intracellular noise. Nature 420: 231–237

    Article  Google Scholar 

  • Raser J, O’Shea E (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811–1814

    Article  Google Scholar 

  • Shahrezaei V, Swain P (2008) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105: 17,256

    Article  Google Scholar 

  • Shea M, Ackers G (1985) The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J Mol Biol 181: 211–230

    Article  Google Scholar 

  • Sinitsyn N, Hengartner N, Nemenman I (2009) Adiabatic coarse-graining and simulations of stochastic biochemical networks. Proc Natl Acad Sci USA 106:10546–10551

    Article  Google Scholar 

  • Srivastava R, Haseltine E, Mastny E, Rawlings J (2011) The stochastic quasi-steady-state assumption: reducing the model but not the noise. J Chem Phys 134(154): 109

    Google Scholar 

  • Taniguchi Y, Choi P, Li G, Chen H, Babu M, Hearn J, Emili A, Xie X (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538

    Article  Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98: 151588–151598

    Article  Google Scholar 

  • van Kampen N (2006) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Vanden-Eijnden E (2003) Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun Math Sci 1: 385–391

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Liu C, Storey J, Tibshirani R, Herschlag D, Brown P (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99: 5860–5865

    Article  Google Scholar 

  • Yin G, Zhang Q (1998) Continuous-time Markov chains and applications: a singular perturbation approach. Springer, Berlin

    Book  MATH  Google Scholar 

  • Yu J, Xiao J, Ren X, Lao K, Xie X (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311: 1600–1603

    Article  Google Scholar 

  • Zeiser S, Franz U, Wittich O, Liebscher V (2008) Simulation of genetic networks modelled by piecewise deterministic Markov processes. IET Syst Biol 2: 113–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Bokes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokes, P., King, J.R., Wood, A.T.A. et al. Multiscale stochastic modelling of gene expression. J. Math. Biol. 65, 493–520 (2012). https://doi.org/10.1007/s00285-011-0468-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0468-7

Keywords

Mathematics Subject Classification (2000)

Navigation