Skip to main content
Log in

On local bifurcations in neural field models with transmission delays

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Neural field models with transmission delays may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this paper we adopt the ‘postfix notation’ for the action of a functional on a vector. That is, if \(W\) is a Banach space with dual space \(W^{*}\), \(w \in W\) and \(w^{*} \in W^{*}\), then \(\langle w,w^{*} \rangle _{} := w^{*}(w)\).

  2. It is customary to suppress the identity operator and write \(\lambda - S\) instead of \(\lambda I - S\).

References

  • Adams RA (1975) Sobolev spaces, pure and applied mathematics, vol 65. Academic Press, New York

    Google Scholar 

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol cybern 27(2): 77–87

    Google Scholar 

  • Arbogast T, Bona JL (1999) Methods of applied mathematics. Department of Mathematics, University of Texas, 1999–2008 (Available from the first author’s homepage)

  • Arendt W, Batty CJK, Hieber M, Neubrander F (2001) Vector-valued Laplace transforms and cauchy problems, monographs in mathematics, vol 96. Birkhäuser Verlag, Basel

    Google Scholar 

  • Arino O, Sánchez E (2006) A theory of linear delay differential equations in infinite dimensional spaces. In: Delay differential equations and applications, (NATO Sci. Ser. II Math. Phys. Chem.) vol 205, Springer, Berlin, pp 285–346

  • Bressloff PC (1996) New mechanism for neural pattern formation. Phys Rev Lett 76(24):4644–4647

    Article  Google Scholar 

  • Browder FE (1961) On the spectral theory of elliptic differential operators. Math Ann 142:22–130

    Article  MathSciNet  MATH  Google Scholar 

  • Clément Ph, Diekmann O, Gyllenberg M, Heijmans HJAM, Thieme HR (1987) Perturbation theory for dual semigroups. I. The sun-reflexive case. Math Ann 277(4):709–725

    Article  MathSciNet  MATH  Google Scholar 

  • Clément Ph, Diekmann O, Gyllenberg M, Heijmans HJAM, Thieme HR (1988) Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case. Proc R Soc Edinburgh Sect A 109(1–2):145–172

    Article  MATH  Google Scholar 

  • Clément Ph, Diekmann O, Gyllenberg M, Heijmans HJAM, Thieme HR (1989) Perturbation theory for dual semigroups. III. Nonlinear Lipschitz continuous perturbations in the sun-reflexive case. Volterra integrodifferential equations in Banach spaces and applications (Trento, 1987). Pitman Res. Notes Math. Ser., vol. 190. Longman Science and Technology, Harlow, pp 67–89

  • Clément Ph, Diekmann O, Gyllenberg M, Heijmans HJAM, Thieme HR (1989) Perturbation theory for dual semigroups. IV. The intertwining formula and the canonical pairing. Semigroup theory and applications (Trieste, 1987). In: Lecture notes in pure and applied mathematics, vol 116, Dekker, New York, pp 95–116

  • Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93(2):91–108

    Article  MathSciNet  MATH  Google Scholar 

  • Coombes S (2010) Large-scale neural dynamics: simple and complex. Neuroimage 52(3):731–739

    Article  Google Scholar 

  • Coombes S, Laing C (2009) Delays in activity-based neural networks. Philos Trans R Soc A Math Phys Eng Sci 367(1891):1117–1129

    Article  MathSciNet  MATH  Google Scholar 

  • Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E 76(5):051901

    Article  MathSciNet  Google Scholar 

  • Coullet PH, Spiegel EA (1983) Amplitude equations for systems with competing instabilities. SIAM J Appl Math 43(4):776–821

    Article  MathSciNet  MATH  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YuA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29(2):141–164

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Getto P, Gyllenberg M (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J Math Anal 39(4):1023–1069

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M (2008) Abstract delay equations inspired by population dynamics, Functional analysis and evolution equations. Birkhäuser, Basel

    Google Scholar 

  • Diekmann O, Gyllenberg M (2012) Equations with infinite delay: blending the abstract and the concrete. J Differ Equ 252(2):819–851

    Google Scholar 

  • Diekmann O, Gyllenberg M, Thieme HR (1991) Perturbation theory for dual semigroups. V. Variation of constants formulas, semigroup theory and evolution equations (Delft, 1989). In: Lecture notes in pure and applied mathematics, vol 135. Dekker, New York, pp 107–123

  • Diekmann O, Van Gils SA, Walther H-O (1995) Delay equations: functional, complex, and nonlinear analysis, vol 110. Springer, New York

    MATH  Google Scholar 

  • Engel K-J, Nagel R (2000) One-parameter semigroups for linear evolution equations, graduate texts in mathematics, vol 194. Springer, New York

    Google Scholar 

  • Engelborghs K, Luzyanina T, Roose D (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, association for computing machinery. Trans Math Softw 28(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Ermentrout GB, Cowan JD (1980) Large scale spatially organized activity in neural nets. SIAM J Appl Math 8:1–21

    Article  MathSciNet  Google Scholar 

  • Ermentrout GB, Jalics JZ, Rubin JE (2010) Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM J Appl Math 70(8):3039–3064

    Article  MathSciNet  MATH  Google Scholar 

  • Faye G, Faugeras O (2010) Some theoretical and numerical results for delayed neural field equations. Phys D 239(9):561–578

    Article  MathSciNet  MATH  Google Scholar 

  • Govaerts W, Khoshsiar Ghaziani R (2007) Numerical methods for two-parameter local bifurcation analysis of maps. SIAM J Sci Comput 29(6):2644–2667

    Article  MathSciNet  MATH  Google Scholar 

  • Greiner G, van Neerven JMAM (1992) Adjoints of semigroups acting on vector-valued function spaces. Israel J Math 77(3):305–333

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1977) Theory of functional differential equations, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hutt A (2008) Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay. Phys Lett A 372(5):541–546

    Article  MATH  Google Scholar 

  • Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Phys D Nonlinear Phenom 203(1):30–54

    Google Scholar 

  • Hutt A, Atay FM (2007) Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay. Chaos Solit Fractals 32(2):547–560

    Article  MathSciNet  MATH  Google Scholar 

  • Hutt A, Bestehorn M, Wennekers T et al (2003) Pattern formation in intracortical neuronal fields. Netw Comput Neural Syst 14(2):351–368

    Article  Google Scholar 

  • Janssens SG, Kuznetsov YuA, Diekmann O (2011) A normalization technique for codimension two bifurcations of equilibria in delay equations (in preparation). Technical report, Mathematical Institute, Utrecht University, Utrecht

  • Kato T (1966) Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer, New York

  • Kuznetsov YuA (1999) Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE’s. SIAM J Numer Anal 36(4):1104–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov YuA (2004) Elements of applied bifurcation theory, vol 112, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Kuznetsov YuA, Levitin VV (1997) CONTENT: integrated environment for the analysis of dynamical systems. Technical report. Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam (version 1.5)

  • Kuznetsov YuA, Meijer HGE (2005) Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J Sci Comput 26(6):1932–1954

    Article  MathSciNet  MATH  Google Scholar 

  • Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Netw Comput Neural Syst 13(1):67–113

    MATH  Google Scholar 

  • Meijer HGE (2006) Codimension 2 bifurcations of iterated maps. Ph.D. thesis, Utrecht University, Utrecht

  • Nunez PL (1974) The brain wave equation: a model for the EEG. Math Biosci 21(3–4):279–297

    Article  MATH  Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94(23):238103

    Article  Google Scholar 

  • Taylor AE (1958) Introduction to functional analysis. Wiley, New York

    MATH  Google Scholar 

  • Van Gils SA (1984) On a formula for the direction of Hopf bifurcation. Technical report TW/225, Center for Mathematics and Computer Science

  • Van Gils SA, Janssens SG (2012) A class of abstract delay differential equations in the light of suns and stars (in preparation). Department of Mathematics, University of Twente, Enschede (Technical report)

  • Veltz R (2011) An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays. C R Math Acad Sci Paris 349(13–14):749–752

    Article  MathSciNet  MATH  Google Scholar 

  • Veltz R, Faugeras O (2010) Local/global analysis of the stationary solutions of some neural field equations. SIAM J Appl Dyn Syst 9(3):954–998

    Article  MathSciNet  MATH  Google Scholar 

  • Veltz R, Faugeras O (2011) Stability of the stationary solutions of neural field equations with propagation delays. J Math Neurosci 1:25 (Art. 1)

    MathSciNet  Google Scholar 

  • Veltz R, Faugeras O (2012) A center manifold result for delayed neural fields equations, electronic preprint. (available from the first author’s homepage), p. 44

  • Venkov NA, Coombes S, Matthews PC (2007) Dynamic instabilities in scalar neural field equations with space-dependent delays. Phys D Nonlinear Phenom 232(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol Cybern 13(2):55–80

    MATH  Google Scholar 

  • Yosida K (1980) Functional analysis. Grundlehren der Mathematischen Wissenschaften, vol 123. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor Odo Diekmann for informal and formal discussions related and unrelated to the present text. Sebastiaan Janssens and Sid Visser gratefully acknowledge support from The Netherlands Organization of Scientific Research (NWO) through grant 635.100.019: From Spiking Neurons to Brain Waves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. van Gils.

Additional information

Dedicated to Odo Diekmann, on the occasion of his 65th birthday.

Appendix A: Proof of Proposition 26

Appendix A: Proof of Proposition 26

We use the same notation as in Lemma 23 and its proof. We recall that the vector \(Z = [\zeta _0, \zeta _1,\ldots ,\zeta _{N-1},1]\) is chosen such that the vector \(\beta = [\beta _0,\beta _1,\ldots ,\beta _N]\), whose elements are the coefficients of the characteristic polynomial \(\fancyscript{P}\), is given by \(\beta = M^TZ\). Introducing \(r := [1,\rho ^2, \rho ^4,\ldots ,\rho ^{2N}]\) we see that

$$\begin{aligned} \fancyscript{P}(\rho ) = r^T M^T Z \end{aligned}$$
(83)

First we determine the vector \(Z\), thereafter we split \(M\), and we conclude the proof by determining how \(Z\) acts on each factor in this decomposition.

Although \(Z\) can be obtained by applying the inverse of the Vandermonde matrix \(W\), we will proceed in a different manner. We start by rewriting (42) as

$$\begin{aligned} \begin{bmatrix} 1&\quad k_1^2&\quad k_1^4&\quad \ldots&\quad k_1^{2N-2}&\quad 0\\ 1&\quad k_2^2&\quad k_2^4&\quad \ldots&\quad k_2^{2N-2}&\quad 0\\ \vdots&\quad \vdots&\quad \vdots&\quad&\quad \vdots&\quad \vdots \\ 1&\quad k_N^2&\quad k_N^4&\quad \ldots&\quad k_N^{2N-2}&\quad 0\\ 0&\quad 0&\quad 0&\quad \ldots&\quad 0&\quad 1 \end{bmatrix} \begin{bmatrix} \zeta _0 \\ \zeta _1 \\ \vdots \\ \zeta _{N-1} \\ 1 \end{bmatrix} = \begin{bmatrix} -k_1^{2N} \\ -k_2^{2N} \\ \vdots \\ -k_N^{2N} \\ 1 \end{bmatrix} \end{aligned}$$
(84)

For \(m\in \mathbb N \) we define \(P_m := [p_1,p_2,\ldots ,p_m]\) with \(p_i \in \{0,1\}\) for \(i=1,\ldots ,m\). We set \(|P_m| = \sum _{i=1}^m p_i\) equal to the number of 1’s in \(P_m\). Using Gaussian elimination the solution of (84) is found to be

$$\begin{aligned} Z =\begin{bmatrix} (-1)^{N-0} \sum _{|P_N|=N-0}{k_1^{2p_1} k_2^{2p_2} \ldots k_N^{2p_N}}\\ (-1)^{N-1} \sum _{|P_N|=N-1}{k_1^{2p_1} k_2^{2p_2} \ldots k_N^{2p_N}}\\ \vdots \\ (-1)^{1} \sum _{|P_N|=1}{k_1^{2p_1} k_2^{2p_2} \ldots k_N^{2p_N}}\\ 1 \end{bmatrix} \end{aligned}$$

From the proof of Lemma 23 we recall the decomposition

$$\begin{aligned} M^T = e^{\lambda \tau _0}(\lambda + \alpha )I + 2\Xi \end{aligned}$$
(85)

where \(I\) is the \((N+1) \times (N+1)\) identity matrix and \(\Xi \) was defined in the proof of Lemma 23. Expanding the bilinear forms in the matrix \(\Xi \) and moving the summation in front of the matrix yields

$$\begin{aligned} \Xi = \sum _{i=1}^{N} c_i k_i \Xi _i, \qquad \Xi _i := \begin{bmatrix} 0&1&k_i^2&\ldots&k_i^{2(N-1)} \\ 0&0&1&\ldots&k_i^{2(N-2)} \\ \vdots&\ddots&\ddots&\vdots \\ 0&&0&1 \\ 0&\ldots&\ldots&\ldots&0 \end{bmatrix} \end{aligned}$$
(86)

Now substitute (85) with (86) into (83) to obtain

$$\begin{aligned} \fancyscript{P}(\rho )&= r^T \left[e^{\lambda \tau _0}(\lambda +\alpha )I+ 2\sum _{i=1}^{N}{c_i k_i \Xi _i}\right] Z\nonumber \\&= e^{\lambda \tau _0}(\lambda +\alpha ) \begin{bmatrix} 1&\rho ^2&\rho ^4&\ldots&\rho ^{2N} \end{bmatrix} Z + 2r^T \sum _{i=1}^{N}{c_i k_i \Xi _i} Z \end{aligned}$$
(87)

We observe that on the one hand,

$$\begin{aligned} e^{\lambda \tau _0}(\lambda +\alpha ) \begin{bmatrix} 1&\rho ^2&\rho ^4&\ldots&\rho ^{2N} \end{bmatrix} Z = e^{\lambda \tau _0}(\lambda +\alpha ) \prod _{i=1}^{N} (\rho ^2-k_i^2) \end{aligned}$$

while on the other hand,

$$\begin{aligned} r^T \sum \limits _{i=1}^{N}{c_i k_i \Xi _i} Z&= \sum \limits _{i=1}^{N}c_i k_i \begin{bmatrix} 1&\rho ^2&\rho ^4&\ldots&\rho ^{2N} \end{bmatrix}\\&\times \begin{bmatrix} (-1)^{N-1} \sum _{|P_{N-1}|=N-1}{k_1^{2p_1} k_2^{2p_2} \ldots k_{i-1}^{2p_{i-1}}k_{i+1}^{2p_i}\ldots k_N^{2p_{N-1}}}\\ (-1)^{N-2} \sum _{|P_{N-1}|=N-2}{k_1^{2p_1} k_2^{2p_2} \ldots k_{i-1}^{2p_{i-1}}k_{i+1}^{2p_i}\ldots k_N^{2p_{N-1}}}\\ \vdots \\ (-1)^{1} \sum _{|P_{N-1}|=1}{k_1^{2p_1} k_2^{2p_2} \ldots k_{i-1}^{2p_{i-1}}k_{i+1}^{2p_i}\ldots k_N^{2p_{N-1}}}\\ 1\\ 0 \end{bmatrix} \end{aligned}$$

Hence by (87) it follows that

$$\begin{aligned} \fancyscript{P}(\rho ) = e^{\lambda \tau _0}(\lambda +\alpha ) \prod _{j=1}^{N} (\rho ^2-k_j^2) + 2\sum _{i=1}^{N} c_i k_i \prod _{\begin{matrix} j=1 \\ j\ne i \end{matrix}}^{N} (\rho ^2-k_j^2) \end{aligned}$$

which is equivalent to (46), in the sense that the two polynomials have identical roots. Hence the proof is complete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gils, S.A., Janssens, S.G., Kuznetsov, Y.A. et al. On local bifurcations in neural field models with transmission delays. J. Math. Biol. 66, 837–887 (2013). https://doi.org/10.1007/s00285-012-0598-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0598-6

Keywords

Mathematics Subject Classification (2000)

Navigation