Skip to main content
Log in

Adiabatic reduction of a model of stochastic gene expression with jump Markov process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bardet JB, Christen A, Guillin A, Malrieu F, Zitt PA (2013) Total variation estimates for the TCP process. Electron J Probab 18(10):1–21

    MathSciNet  Google Scholar 

  • Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast dynamical systems, a sample-paths approach. Springer, Berlin

    MATH  Google Scholar 

  • Buckwar E, Riedler MG (2011) An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J Math Biol 63(6):1051–1093

    Article  MATH  MathSciNet  Google Scholar 

  • Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 5:1822–1859

    Article  MathSciNet  Google Scholar 

  • Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Stat Soc Ser B 46(3):353–388

    MATH  Google Scholar 

  • Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194. doi:10.1126/science.1141967

    Article  Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53–98. doi:10.1016/0022-0396(79)90152-9

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97(16):168–302. doi:10.1103/PhysRevLett.97.168302

    Google Scholar 

  • Gardiner CW (1985) Handbook of stochastic methods. Springer, Berlin

  • Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–1036

    Article  Google Scholar 

  • Hasty J, Pradines J, Dolnik M, Collins J (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97(5):2075–2080

    Article  Google Scholar 

  • Kang HW, Kurtz TG (2013) Separation of time-scales and model reduction for stochastic reaction networks. Ann App Probab 23:529–583

    Article  MATH  MathSciNet  Google Scholar 

  • Lasota A, Mackey MC (1985) Probabilistic properties of deterministic systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lei J (2009) Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. J Theor Biol 256:485–492

    Article  Google Scholar 

  • Mackey MC, Tyran-Kamińska M (2008) Dynamics and density evolution in piecewise deterministic growth processes. Ann Pol Math 94(2):111–129. doi:10.4064/ap94-2-2

    Article  MATH  Google Scholar 

  • Mackey MC, Tyran-Kamińska M, Yvinec R (2011) Molecular distributions in gene regulatory dynamics. J Theor Biol 274(1):84–96. doi:10.1016/j.jtbi.2011.01.020

    Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73. doi:10.1038/ng869

    Article  Google Scholar 

  • Pakdaman K, Thieullen M, Wainrib G (2012) Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv Appl Probab 42(3):761–794

    Article  MathSciNet  Google Scholar 

  • Raj A, van Oudenaarden A (2009) Single-molecule approaches to stochastic gene expression. Annu Rev Biophys 38(1):255–270. doi:10.1146/annurev.biophys.37.032807.125928

    Article  Google Scholar 

  • Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309. doi:10.1371/journal.pbio.0040309

  • Riedler MG, Thieullen M, Wainrib G (2012) Limit theorems for infinite-dimensional piecewise deterministic Markov processes. Applications to stochastic excitable membrance models. Electron J Probab 17(55): 1–48

    Google Scholar 

  • Santillán M, Qian H (2011) Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys Rev E 83:1–8

    Article  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  Google Scholar 

  • Shahrezaei V, Swain PS (2008) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105(45):17256–17261. doi:10.1073/pnas.0803850105

    Google Scholar 

  • Stratonovich R (1963) Topics in the theory of random noise, vol 1. General theory of random processes. Nonlinear transformations of signals and noise, revised English edition. Translated from the Russian by Richard A. Silverman edn. Gordon and Breach Science Publishers, New York

  • Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332(6028):472–474. doi:10.1126/science.1198817

    Article  Google Scholar 

  • Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  Google Scholar 

  • Tikhonov AN (1952) Systems of differential equations containing small parameters in the derivatives. Mat Sb (NS) 31(73):575–586

    Google Scholar 

  • Titular U (1978) A systematic solution procedure for the Fokker–Planck equation of a Brownian particle in the high-friction case. Phys A 91:321–344

    Article  MathSciNet  Google Scholar 

  • Tyran-Kamińska M (2009) Substochastic semigroups and densities of piecewise deterministic Markov processes. J Math Anal Appl 357(2):385–402

    Article  MATH  MathSciNet  Google Scholar 

  • Wilemski G (1976) On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J Stat Phys 14:153–169

    Article  Google Scholar 

  • Xie XS, Choi PJ, Li GW, Lee NK, Lia G (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys 37(1):417–444. doi:10.1146/annurev.biophys.37.092607.174640

    Article  Google Scholar 

  • Zeiser S, Franz U, Wittich O, Liebscher V (2008) Simulation of genetic networks modelled by piecewise deterministic Markov processes. IET Syst Biol 2(3):113–135

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC, Canada), the Mathematics of Information Technology and Complex Systems (MITACS, Canada), the National Natural Science Foundation of China (NSFC 11272169, China) and the région Rhône-Alpes (mobility fellowship), and carried out in Montréal, Lyon and Beijing. We thank our colleague M. Tyran-Kamińska for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Yvinec.

Additional information

This research was supported by the Ecole Normale Superieure Lyon (ENS Lyon, France), the National Natural Science Foundation of China, and the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yvinec, R., Zhuge, C., Lei, J. et al. Adiabatic reduction of a model of stochastic gene expression with jump Markov process. J. Math. Biol. 68, 1051–1070 (2014). https://doi.org/10.1007/s00285-013-0661-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0661-y

Keywords

Mathematics Subject Classification (2000)

Navigation