Skip to main content

Advertisement

Log in

Multiscale analysis for a vector-borne epidemic model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Traditional studies about disease dynamics have focused on global stability issues, due to their epidemiological importance. We study a classical SIR-SI model for arboviruses in two different directions: we begin by describing an alternative proof of previously known global stability results by using only a Lyapunov approach. In the sequel, we take a different view and we argue that vectors and hosts can have very distinctive intrinsic time-scales, and that such distinctiveness extends to the disease dynamics. Under these hypothesis, we show that two asymptotic regimes naturally appear: the fast host dynamics and the fast vector dynamics. The former regime yields, at leading order, a SIR model for the hosts, but with a rational incidence rate. In this case, the vector disappears from the model, and the dynamics is similar to a directly contagious disease. The latter yields a SI model for the vectors, with the hosts disappearing from the model. Numerical results show the performance of the approximation, and a rigorous proof validates the reduced models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams B, Boots M (2010) How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2(1):1–10

    Article  Google Scholar 

  • Aguiar M, Ballesteros S, Kooi BW, Stollenwerk N (2011) The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. J Theor Biol 289:181–196

    Article  MathSciNet  Google Scholar 

  • Aldemir A, Bedir H, Demirci B, Alten B (2010) Biting activity of mosquito species (diptera: Culicidae) in the turkey-armenia border area, ararat valley, turkey. J Med Entomol 47(1):22–27

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

  • Andraud M, Hens N, Marais C, Beutels P (2012) Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS One 7(11):e49085

    Article  Google Scholar 

  • Bailey NTJ (1975) The mathematical theory of infectious diseases. Griffin, USA

  • Barrera R, Amador M, Clark GG (2006) Ecological factors influencing Aedes aegypti (diptera: Culicidae) productivity in artificial containers in salinas, Puerto Rico. J Med Entomol 43(3):484–492

    Article  Google Scholar 

  • Breman JG (2012) Resistance to artemisinin-based combination therapy. Lancet Infect Dis 12(11):820–822, 811

    Google Scholar 

  • Britton N (2003) Essential mathematical biology. Springer, Verlag

  • Cai L, Guo S, Li X, Ghosh M (2009) Global dynamics of a dengue epidemic mathematical model. Chaos, Solitons Fractals 42(4):2297–2304

    Article  MATH  MathSciNet  Google Scholar 

  • Centers for disease control and prevention (2012) Geographic distribution of chikungunya virus. http://www.cdu.gov/chikungunya/map/index.html.

  • Chastel C (2012) Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front Physiol 3:70

    Article  Google Scholar 

  • Chen S-C, Hsieh M-H (2012) Modeling the transmission dynamics of dengue fever: implications of temperature effects. Sci Total Environ 431:385–391

    Article  Google Scholar 

  • Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 28(10):437–446

    Article  Google Scholar 

  • David MR, de Oliveira RL, de Freitas RM (2009) Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of rio de janeiro: presumed influence of differential urban structure on mosquito biology. Mem Inst Oswaldo Cruz 104:927–932

    Article  Google Scholar 

  • Desenclos J-C (2011) Transmission parameters of vector-borne infections. Med Mal Infect 41(11):588–593

    Article  Google Scholar 

  • Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, Chichester

    Google Scholar 

  • Dietz K (1975) Transmission and control of arbovirus diseases. In: Ludwig D, Cooke KL (eds) Epidemiology, SIAM, Philadelphia, pp 104–121

  • Esteva L, Vargas C (1998) Analysis of a dengue disease transmission model. Math Biosci 150(2):131–151

    Article  MATH  Google Scholar 

  • Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, Oxford

  • Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev, Micro 6(6):477–487, 406

    Google Scholar 

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18(3):215–227

    Article  Google Scholar 

  • Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496

    Google Scholar 

  • Koella JC (1991) On the use of mathematical models of malaria transmission. Acta Trop 49(1):1–25

    Google Scholar 

  • Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4(5):e646

    Article  Google Scholar 

  • Lord CC (2007) Modeling and biological control of mosquitoes. J Am Mosq Control Assoc 23(2 Suppl):252–264

    Article  Google Scholar 

  • Luz PM, Codeço CT, Massad E, Struchiner CJ (2003) Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98(7):871–878

    Article  Google Scholar 

  • Luz PM, Codeço CT, Medlock J, Struchiner CJ, Valle D, Galvani AP (2009) Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect 137(8):1203–1215

    Article  Google Scholar 

  • Luz PM, Struchiner CJ, Galvani AP (2010) Modeling transmission dynamics and control of vector-borne neglected tropical diseases. PLoS Negl Trop Dis 4(10):e761

    Article  Google Scholar 

  • Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria-a review. Malar J 10:202

    Article  Google Scholar 

  • Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58(3):277–282

    Google Scholar 

  • Murray JD (2002) Mathematical biology, volume of Interdisciplinary applied mathematics, vol 17–18, 3rd edn. Springer, New York

  • Ngwa G, Shu W (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32(7–8):747–763

    Article  MATH  MathSciNet  Google Scholar 

  • Nishiura H (2006) Mathematical and statistical analyses of the spread of dengue. Dengue Bull 30:51–67

    Google Scholar 

  • Okell LC, Drakeley CJ, Bousema T, Whitty CJM, Ghani AC (2008) Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med 5(11):e226 (discussion e226)

    Google Scholar 

  • (1991) Singular perturbation methods for ordinary differential equations. Springer, Verlag

  • Petersen LR, Fischer M (2012) Unpredictable and difficult to control-the adolescence of west nile virus. N Engl J Med 367(14):1281–1284

    Article  Google Scholar 

  • Powers AM (2010) Chikungunya. Clin Lab Med 30(1):209–219

    Article  Google Scholar 

  • Powers AM, Brault AC, Tesh RB, Weaver SC (2000) Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81(Pt 2):471–479

    Google Scholar 

  • Ross R (1911) The prevention of malaria, 2nd edn. Murray, London

  • Rajapakse S, Rodrigo C, Rajapakse A (2010) Atypical manifestations of chikungunya infection. Trans R Soc Trop Med Hyg 104(2):89–96

    Article  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD (2000) Longitudinal studies of Aedes aegypti (diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37(1):89–101

    Article  Google Scholar 

  • Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD (1993) Blood-feeding patterns of Aedes aegypti (diptera: Culicidae) collected in a rural thai village. J Med Entomol 30(5):922–927

    Google Scholar 

  • Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD (2000) Longitudinal studies of Aedes aegypti (diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37(1):77–88

    Article  Google Scholar 

  • Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE (2012) Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog 8(4):e1002588

    Article  Google Scholar 

  • Styer LM, Minnick SL, Sun AK, Scott TW (2007) Mortality and reproductive dynamics of Aedes aegypti (diptera: Culicidae) fed human blood. Vector Borne Zoonotic Dis 7(1):86–98

    Article  Google Scholar 

  • Tewa JJ, Dimi JL, Bowong S (2009) Lyapunov functions for a dengue disease transmission model. Chaos, Solitons Fractals 39(2):936–941

    Article  MATH  MathSciNet  Google Scholar 

  • Tomori O (2004) Yellow fever: the recurring plague. Crit Rev Clin Lab Sci 41(4):391–427

    Article  Google Scholar 

  • World Health Organization (2012) Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/

  • Yang H, Wei H, Li X (2010) Global stability of an epidemic model for vector-borne disease. J Syst Sci Complex 23:279–292

    Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009) Assessing the effects of temperature on dengue transmission. Epidemiol Infect 137(8):1179–1187

    Article  Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137(8):1188–1202

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges many useful discussions held in the Dengue Modelling initiative developed at the CMA/FGV, where part of this work was performed. The author also acknowledges the workshops and support of PRONEX Dengue under CNPQ grant # 550030/2010-7. The author is partially supported by CNPq grant # 309616/2009-3 and FAPERJ grant # 110.174/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max O. Souza.

Appendix A

Appendix A

Proof of Theorem 3

The proof of Theorem 3 is divided in several lemmas.

We write system (4) in a more concise form as

$$\begin{aligned} \dot{\mathbf{W}}&= \fancyscript{F}(\mathbf{W},Z),\\ \epsilon \dot{Z}&= \fancyscript{G}(\mathbf{W},Z). \end{aligned}$$

with \(\mathbf{W}(t)=(X(t),Y(t))^t\) and \(\fancyscript{F}\) and \(\fancyscript{G}\) being the appropriate entries of the right hand side of (4).

We write

$$\begin{aligned} \mathbf{W}=\mathbf{W}^0+\epsilon {\hat{\mathbf{W}}}^0+\epsilon \mathbf{Q}\quad \text{ and }\quad Z=Z^0+\hat{Z}^0+\epsilon \bar{Z}, \end{aligned}$$

with

$$\begin{aligned} {\hat{\mathbf{W}}}^0=\frac{X_0}{\bar{\sigma }Y_0+\bar{\mu }_v}\left( Z_0-\frac{\bar{\sigma }Y_0}{\bar{\sigma }Y_0+\bar{\mu }_v}\right) \mathrm{e}^{-(\bar{\sigma }Y_0 +\bar{\mu }_v)t/\epsilon }(1,-1)^t. \end{aligned}$$

Notice that since \({\hat{\mathbf{W}}}^0\) is bounded, we need only to prove that \((\mathbf{Q},\bar{Z})\) exist, are bounded, and are unique. In this case, we then take \(C=\Vert (\mathbf{Q},\bar{Z})\Vert _\infty \).

First, we observe that

$$\begin{aligned} \dot{\mathbf{W}^0}\!+\!\epsilon \dot{{\hat{\mathbf{W}}}^0}\!=\!\fancyscript{F}(\mathbf{W}^0,Z^0\!+\!\hat{Z}^0)\!+\!K(t)(1,\!-\!1)^t \quad \text{ and }\quad \dot{\hat{Z}^0}\!=\!\fancyscript{G}(\mathbf{W}^0,Z^0\!+\!\hat{Z}^0)\!+\!L(t), \end{aligned}$$

where

$$\begin{aligned} K(t)=\delta \hat{Z}^0(t/\epsilon )(X^0(t)-X_0) \quad \text{ and }\quad L(t)=\bar{\sigma }\hat{Z}^0(t/\epsilon )(Y^0(t)-Y_0). \end{aligned}$$

In particular, because of the fast decay of \(\hat{Z}^0\), and because \(L(0)=K(0)=0\), it follows that there exists a constant \(C>0\), such that

$$\begin{aligned} \int \limits _0^\infty K(t)\,\mathrm{d}t,\quad \int \limits _0^\infty L(t)\,\mathrm{d}t\le C\epsilon ^2. \end{aligned}$$

Since \(\fancyscript{F}\) and \(\fancyscript{G}\) are quadratic, we write:

$$\begin{aligned} \fancyscript{F}(\mathbf{W},Z)&= \fancyscript{F}(\mathbf{W}^0,Z^0+\hat{Z}^0)+\epsilon D_{\mathbf{W}}\fancyscript{F}(\mathbf{W}^0,Z^0+\hat{Z}^0)(\mathbf{Q}+{\hat{\mathbf{W}}}^0)\\&+ \epsilon D_{Z}\fancyscript{F}(\mathbf{W}^0,Z^0+\hat{Z}^0)\bar{Z}+\epsilon ^2\delta {\bar{X}}\bar{Z}\begin{pmatrix} -1\\ 1 \end{pmatrix}; \\ \fancyscript{G}(\mathbf{W},Z)&= \fancyscript{G}(\mathbf{W}^0,Z^0+\hat{Z}^0)+\epsilon D_{\mathbf{W}}\fancyscript{G}(\mathbf{W}^0,Z^0+\hat{Z}^0)(\mathbf{Q}+{\hat{\mathbf{W}}}^0)\\&+ \epsilon D_{Z}\fancyscript{G}(\mathbf{W}^0,Z^0+\hat{Z}^0)\bar{Z}+\epsilon ^2\bar{\sigma }\bar{Y}\bar{Z}. \end{aligned}$$

where \(\mathbf{Q}=({\bar{X}},\bar{Y})^t\).

Let \(T(t,s)\) be the fundamental solution to the linearised system

$$\begin{aligned} \begin{pmatrix} \dot{\mathbf{Q}}\\ \epsilon \dot{\bar{Z}} \end{pmatrix} =\begin{pmatrix} D_{\mathbf{W}}\fancyscript{F}(\mathbf{W}^0,Z^0+\hat{Z}^0)&{}D_{Z}\fancyscript{F}(\mathbf{W}^0,Z^0+\hat{Z}^0)\\ D_{\mathbf{W}}\fancyscript{G}(\mathbf{W}^0,Z^0+\hat{Z}^0)&{}D_{Z}\fancyscript{G}(\mathbf{W}^0,Z^0+\hat{Z}^0) \end{pmatrix} \begin{pmatrix} \mathbf{Q}\\ \bar{Z}\end{pmatrix} \end{aligned}$$
(12)

Then direct integration yields

Lemma 1

The functions \((\mathbf{Q},\bar{Z})\) satisfy the following integral equation:

$$\begin{aligned} \left( \begin{array}{l} \mathbf{Q}\\ \bar{Z}\end{array} \right)&= \!T(t,0) \left( \begin{array}{l} Q_0\\ \bar{Z}_0 \end{array} \right) + \int \limits _0^tT(t,s) \left( \begin{array}{ll} \epsilon \delta {\bar{X}}\bar{Z}&{} \left( \begin{array}{c} 1\\ -1 \end{array}\right) \\ &{} \bar{\sigma }\bar{Y}\bar{Z}\\ \end{array}\right) \,\mathrm{d}s \nonumber \\&+\int \limits _0^tT(t,s) \left( \begin{array}{l} D_W{\fancyscript{F}} \cdot {\hat{\mathbf{W}}}^0(s)\\ D_W{\fancyscript{G}} \cdot {\hat{\mathbf{W}}}^0(s)-\dot{Z}_0(s) \end{array}\right) \, \mathrm{d}s \nonumber \\&- \frac{1}{\epsilon ^2}\int \limits _0^tT(t,s) \left( \begin{array}{ll} \epsilon K(s) &{} \left( \begin{array}{l} 1\\ -1 \end{array}\right) \\ &{} L(s)\\ \end{array}\right) \,\mathrm{d}s. \nonumber \\ \end{aligned}$$
(13)

Moreover, the last term is bounded uniformly in \(\epsilon \).

We also have the following large time behaviour result for the linearised system (12):

Lemma 2

Let \((\mathbf{Q}(t),\bar{Z}(t))\) be a solution to (12). Then

$$\begin{aligned} \lim _{t\rightarrow \infty }(\mathbf{Q}(t),\bar{Z}(t))=\mathbf 0 . \end{aligned}$$

In particular, the solutions to (12) are bounded uniformly in time for any given \(\epsilon \). Moreover, they are also uniformly bounded in \(\epsilon \le 1\), for all \(t\ge 0\).

Proof

For notation convenience, let us write (12) as

$$\begin{aligned} \begin{pmatrix} \dot{\mathbf{Q}}\\ \epsilon \dot{\bar{Z}} \end{pmatrix} = A(\mathbf{W}^0,Z^0+\hat{Z}^0) \begin{pmatrix} \mathbf{Q}\\ \bar{Z}\end{pmatrix}. \end{aligned}$$

Fix \(\epsilon >0\) and \((X_0,Y_0,Z_0)\). From Theorem 2, we know that

$$\begin{aligned} \lim _{t\rightarrow \infty } \left( \mathbf{W}^0(t),Z^0(t)+\hat{Z}^0(t/\epsilon )\right) =(\mathbf{W}^*,Z^*), \end{aligned}$$

where \((\mathbf{W}^*,Z^*)\) is the globally asymptotic stable equilibrium given by Theorem 1. Therefore, there exists \(T>0\), such that \(t>T\) implies that \(A\) is negative-definite. Since \(\hat{Z}^0\rightarrow 0\), as \(\epsilon \rightarrow 0\). We can choose \(T\) such this holds for all \(0<\epsilon \le 1\).

Because of the continuity of the solution with respect to the initial conditions, we have that \(T\) is a continuous function of the initial conditions. Since these lie on a compact set, we can pick \(T\) such that \(A\) is negative definite for all \(0<\epsilon \le 1\) and for all \((X_0,Y_0,Z_0)\), such that \(X_0,Y_0\ge 0, X_0+Y_0\le 1\) and \(0<Z_0\le 1\). But then, for any such \((X_0,Y_0,Z_0)\) and \(0<\epsilon \le 1\), we have that

$$\begin{aligned} \lim _{t\rightarrow \infty }T(t,T)=0. \end{aligned}$$

Therefore, for any initial condition \((Q_0,\bar{Z}_0)^t\), we have

$$\begin{aligned} \lim _{t\rightarrow \infty }T(t,0)\begin{pmatrix}Q_0\\ \bar{Z}_0\end{pmatrix}= \lim _{t\rightarrow \infty }T(t,T)T(T,0)\begin{pmatrix}Q_0\\ \bar{Z}_0\end{pmatrix}=0. \end{aligned}$$

We can now conclude the proof as follows: \(\square \)

Proof

(Proof of Theorem 3)

First, we observe that the nonlinear term in (13) is locally Lipschitz, hence a standard fixed point yields existence and uniqueness for \(0\le t <t_0\) , for some, possibly small, \(t_0\).

From the decaying of \({\hat{\mathbf{W}}}^0\) and from Lemma 1, we conclude that the two last terms of (13) are uniformly bounded in time and \(\epsilon \).

Moreover, Lemma 2 implies that the first two terms on the right hand side of (13) are also uniformly bounded in time and in \(\epsilon \), for sufficiently small \(\epsilon \). Thus, we conclude that the same also holds true for \((Q,R)^t\). Therefore, the solution to (13) is globally defined in time, and it is bounded uniformly in \(\epsilon \), if the latter is sufficiently small. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, M.O. Multiscale analysis for a vector-borne epidemic model. J. Math. Biol. 68, 1269–1293 (2014). https://doi.org/10.1007/s00285-013-0666-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0666-6

Keywords

Mathematics Subject Classification (2000)

Navigation