Skip to main content
Log in

Moment-flux models for bacterial chemotaxis in large signal gradients

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Chemotaxis is a fundamental process in the life of many prokaryotic and eukaryotic cells. Chemotaxis of bacterial populations has been modeled by both individual-based stochastic models that take into account the biochemistry of intracellular signaling, and continuum PDE models that track the evolution of the cell density in space and time. Continuum models have been derived from individual-based models that describe intracellular signaling by a system of ODEs. The derivations rely on quasi-steady state approximations of the internal ODE system. While this assumption is valid if cell movement is subject to slowly changing signals, it is often violated if cells are exposed to rapidly changing signals. In the latter case current continuum models break down and do not match the underlying individual-based model quantitatively. In this paper, we derive new PDE models for bacterial chemotaxis in large signal gradients that involve not only the cell density and flux, but also moments of the intracellular signals as a measure of the deviation of cell’s internal state from its steady state. The derivation is based on a new moment closure method without calling the quasi-steady state assumption of intracellular signaling. Numerical simulations suggest that the resulting model matches the population dynamics quantitatively for a much larger range of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917. doi:10.1038/43199

    Article  Google Scholar 

  • Berg HC (1975) How bacteria swim. Sci Am 233:36–44

    Google Scholar 

  • Berg HC (1983) Random walks in biology. princeton University Press, Princeton

    Google Scholar 

  • Berg HC, Brown D (1972) Chemotaxis in Escherichia Coli analyzed by three-dimensional tracking. Nature 239:502–507

    Article  Google Scholar 

  • Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1):12–19. doi:10.1016/j.cub.2006.11.027

    Article  Google Scholar 

  • Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci 101(14):5018–5023. doi:10.1073/pnas.0308052101

    Article  Google Scholar 

  • Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik 142(1):123–141

    Article  MathSciNet  MATH  Google Scholar 

  • Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655

    Article  Google Scholar 

  • Durney CH (2013) A two-component model for bacterial chemotaxis. Master’s thesis, The Ohio State University

  • Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2):362–394

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361–391

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Othmer HG (2007) Taxis equations for amoeboid cells. J Math Biol 54:847–885

    Article  MathSciNet  MATH  Google Scholar 

  • Franz B, Erban R (2013) Hybrid modelling of individual movement and collective behaviour. In: Dispersal, individual movement and spatial ecology. Springer, pp 129–157

  • Franz B, Xue C, Painter KJ, Erban R (2014) Travelling waves in hybrid chemotaxis models. Bull Math Biol 76(2):377–400. doi:10.1007/s11538-013-9924-4

    Article  MathSciNet  MATH  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi:10.1038/nrm2720

    Article  Google Scholar 

  • Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285–303. doi:10.1146/annurev-micro-092611-150120

    Article  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217. doi:10.1007/s00285-008-0201-3

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105(3):103–165

    MathSciNet  MATH  Google Scholar 

  • Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56(6):1560–1566

    Google Scholar 

  • Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi:10.1016/j.cyto.2008.06.017

    Article  Google Scholar 

  • Kalinin YV, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439–2448. doi:10.1016/j.bpj.2008.10.027

    Article  Google Scholar 

  • Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399–415

    Article  MATH  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30:225–234

    Article  MATH  Google Scholar 

  • Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven Press, New York

    Google Scholar 

  • Lux R, Shi W (2004) Chemotaxis-guided movements in bacteria. Crit Rev Oral Biol Med 15(4):207–220

    Article  Google Scholar 

  • Othmer H, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis M, Maini P, Petrovskii S (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. Springer

  • Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Painter KJ, Umulis D, Xue C (2009) The intersection of theory and application in elucidating pattern formation in developmental biology. Math Model Nat Phenom 4(4):3–82

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Xin X, Xue C (2013) Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 14(5):9205–9248

    Article  Google Scholar 

  • O’Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181(14):4308–4317

    Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795

    Article  Google Scholar 

  • Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Perthame B (2004) Pde models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl Math 49(6):539–564

    Article  MathSciNet  MATH  Google Scholar 

  • Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci 44(12):2881–2897

    Article  Google Scholar 

  • Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci 108(39):16,235–16,240

    Article  Google Scholar 

  • Si G, Tang M, Yang X (2014) A pathway-based mean-field model for E. coli chemotaxis: mathematical derivation and its hyperbolic and parabolic limits. Multiscale Model Simul 12(2):907–926

    Article  MathSciNet  MATH  Google Scholar 

  • Simons JE, Milewski PA (2011) The volcano effect in bacterial chemotaxis. Math Comput Model 53(7–8):1374–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397. doi:10.1016/j.tim.2006.07.001

    Article  Google Scholar 

  • Sze CW, Zhang K, Kariu T, Pal U, Li C (2012) Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect Immun 80(7):2485–2492. doi:10.1128/IAI.00145-12

    Article  Google Scholar 

  • Taylor-King JP, Franz B, Yates CA, Erban R (2015) Mathematical modelling of turning delays in swarm robotics. IMA J Appl Math, p hxv001

  • Tindall MJ, Maini PK, Porter SL, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570–1607. doi:10.1007/s11538-008-9322-5

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70(6):1525–1569. doi:10.1007/s11538-008-9321-6

    Article  MathSciNet  MATH  Google Scholar 

  • Tu Y (2013) Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys. doi:10.1146/annurev-biophys-083012-130358

  • Wadhams G, Armitage J (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    Article  Google Scholar 

  • Wang ZA (2013) Mathematics of traveling waves in chemotaxis. DCDS-B 18:601–641

    Article  MathSciNet  MATH  Google Scholar 

  • Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM (2007) Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 75(8):3747–3757. doi:10.1128/IAI.00082-07

    Article  Google Scholar 

  • Xin X, Othmer HG (2012) A “trimer of dimers”-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 74(10):2339–2382. doi:10.1007/s11538-012-9756-7

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C (2015) Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J Math Biol 70(1–2):1–44. doi:10.1007/s00285-013-0748-5

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Budrene EO, Othmer HG (2011) Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol 7(12):e1002,332

    Article  Google Scholar 

  • Xue C, Othmer HG (2009) Multiscale models of taxis-driven patterning in bacterial populations. SIAM J Appl Math 70(1):133–167

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Othmer HG, Erban R (2009) From individual to collective behavior of unicellular organisms: recent results and open problems. In: Multiscale phenomena in biology: proceedings of the 2nd conference on mathematics and biology. AIP conference proceedings, vol 1167, no 1, pp 3–14

Download references

Acknowledgments

The authors would like to thank Professor Hans G. Othmer from University of Minnesota and Professor Radek Erban from University of Oxford for insightful discussions during the early stage of this project. This research was supported by NSF DMS-1312966 and NSF CAREER Award 1553637 to CX. CX was also supported by the Mathematical Biosciences Institute as a long-term visitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, C., Yang, X. Moment-flux models for bacterial chemotaxis in large signal gradients. J. Math. Biol. 73, 977–1000 (2016). https://doi.org/10.1007/s00285-016-0981-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0981-9

Keywords

Mathematics Subject Classification

Navigation