Skip to main content
Log in

The limits of weak selection and large population size in evolutionary game theory

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the \(wN\) limit, in which weak selection is applied before the large population limit, and the \(Nw\) limit, in which the order is reversed. Formal mathematical definitions of the \(Nw\) and \(wN\) limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the \(Nw\) and \(wN\) limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, New York

    MATH  Google Scholar 

  • Allen B, Nowak MA (2014) Games on graphs. EMS Surv Math Sci 1(1):113–151

    Article  MathSciNet  MATH  Google Scholar 

  • Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68(8):1923–1944

    Article  MathSciNet  MATH  Google Scholar 

  • Bladon AJ, Galla T, McKane AJ (2010) Evolutionary dynamics, intrinsic noise, and cycles of cooperation. Phys Rev E 81(6):066122

    Article  Google Scholar 

  • Blume LE (1993) The statistical mechanics of strategic interaction. Games and economic behavior 5(3):387–424

    Article  MathSciNet  MATH  Google Scholar 

  • Bomze I, Pawlowitsch C (2008) One-third rules with equality: second-order evolutionary stability conditions in finite populations. J Theor Biol 254(3):616–620

    Article  MathSciNet  Google Scholar 

  • Broom M, Rychtár J (2013) Game-theoretical models in biology. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Chen YT (2013) Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann Appl Probab 23(2):637–664

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Haldane JBS (1927) A mathematical theory of natural and artificial selection, part V: selection and mutation. Math Proc Camb Philos Soc 23:838–844

    Article  MATH  Google Scholar 

  • Harsanyi JC, Selten R et al (1988) A general theory of equilibrium selection in games, vol 1. MIT Press Books, Cambridge

    MATH  Google Scholar 

  • Helbing D (1996) A stochastic behavioral model and a ‘microscopic’ foundation of evolutionary game theory. Theor Decis 20(2):149–179

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and replicator dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ibsen-Jensen R, Chatterjee K, Nowak MA (2015) Computational complexity of ecological and evolutionary spatial dynamics. Proc Nat Acad Sci 112(51):15,636–15,641

    Google Scholar 

  • Imhof LA, Nowak MA (2006) Evolutionary game dynamics in a Wright–Fisher process. J Math Biol 52(5):667–681

    Article  MathSciNet  MATH  Google Scholar 

  • Jeong HC, Oh SY, Allen B, Nowak MA (2014) Optional games on cycles and complete graphs. J Theor Biol 356:98–112

    Article  MathSciNet  Google Scholar 

  • Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1(2):177–232

    Article  MathSciNet  MATH  Google Scholar 

  • Ladret V, Lessard S (2008) Evolutionary game dynamics in a finite asymmetric two-deme population and emergence of cooperation. J Theor Biol 255(1):137–151

    Article  MathSciNet  Google Scholar 

  • Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54(5):721–744

    Article  MathSciNet  MATH  Google Scholar 

  • Lessard S (2011) On the robustness of the extension of the one-third law of evolution to the multi-player game. Dyn Games Appl 1(3):408–418

    Article  MathSciNet  MATH  Google Scholar 

  • Moran PAP (1958) Random processes in genetics. Math Proc Camb Philos Soc 54(01):60–71

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359(6398):826–829

    Article  Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650

    Article  Google Scholar 

  • Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc B Biol Sci 365(1537):19–30

    Article  Google Scholar 

  • Ohtsuki H, Nowak MA (2006) Evolutionary games on cycles. Proc R Soc B Biol Sci 273(1598):2249–2256. doi:10.1098/rspb.2006.3576

    Article  Google Scholar 

  • Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Article  Google Scholar 

  • Ohtsuki H, Bordalo P, Nowak MA (2007) The one-third law of evolutionary dynamics. J Theor Biol 249(2):289–295

    Article  MathSciNet  Google Scholar 

  • Saakian DB, Hu C-K (2016) Solution of classical evolutionary models in the limit when the diffusion approximation breaks down. Phys Rev E 94(4):042422

    Article  Google Scholar 

  • Smith JM (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18

    Article  MATH  Google Scholar 

  • Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216

    Article  MathSciNet  Google Scholar 

  • Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259(3):570–581. doi:10.1016/j.jtbi.2009.03.035

    Article  MathSciNet  Google Scholar 

  • Taylor C, Fudenberg D, Sasaki A, Nowak M (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor PD, Day T, Wild G (2007) Evolution of cooperation in a finite homogeneous graph. Nature 447(7143):469–472

    Article  Google Scholar 

  • Thomson BS, Bruckner JB, Bruckner AM (2001) Elementary real analysis. Prentice Hall Inc, Upper Saddle River

    MATH  Google Scholar 

  • Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95(23):238701

    Article  Google Scholar 

  • Traulsen A, Nowak MA, Pacheco JM (2006a) Stochastic dynamics of invasion and fixation. Phys Rev E 74(1):011909

    Article  Google Scholar 

  • Traulsen A, Pacheco JM, Imhof LA (2006b) Stochasticity and evolutionary stability. Phys Rev E 74(2):021905

    Article  MathSciNet  Google Scholar 

  • Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol 246(3):522–529

    Article  MathSciNet  Google Scholar 

  • Weibull JW (1997) Evolutionary game theory. MIT press, Cambridge

    MATH  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16(2):97–159

    Google Scholar 

  • Wu B, Altrock PM, Wang L, Traulsen A (2010) Universality of weak selection. Phys Rev E 82(4):046106

    Article  Google Scholar 

  • Wu B, García J, Hauert C, Traulsen A (2013) Extrapolating weak selection in evolutionary games. PLoS Comput Biol 9(12):e1003381

    Article  Google Scholar 

  • Wu B, Bauer B, Galla T, Traulsen A (2015) Fitness-based models and pairwise comparison models of evolutionary games are typically different–even in unstructured populations. New J Phys 17(2):023043

    Article  MathSciNet  Google Scholar 

  • Zheng X, Cressman R, Tao Y (2011) The diffusion approximation of stochastic evolutionary game dynamics: mean effective fixation time and the significance of the one-third law. Dyn Games Appl 1(3):462–477

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Sample.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sample, C., Allen, B. The limits of weak selection and large population size in evolutionary game theory. J. Math. Biol. 75, 1285–1317 (2017). https://doi.org/10.1007/s00285-017-1119-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1119-4

Keywords

Mathematics Subject Classification

Navigation