Skip to main content
Log in

A space-jump derivation for non-local models of cell–cell adhesion and non-local chemotaxis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Implementation from libstc++ gcc 4.9.3 https://gcc.gnu.org/.

  2. www.numpy.org.

References

  • Alberts B (2008) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

    Article  MathSciNet  MATH  Google Scholar 

  • Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell–cell adhesion. J Theor Biol 243(1):98–113

    Article  MathSciNet  Google Scholar 

  • Armstrong NJ, Painter KJ, Sherratt JA (2009) Adding adhesion to a chemical signaling model for somite formation. Bull Math Biol 71(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  Google Scholar 

  • Beysens DA, Forgacs G, Glazier JA (2000) Cell sorting is analogous to phase ordering in fluids. Proc Natl Acad Sci 97(17):9467–9471

    Article  Google Scholar 

  • Brodland GW, Chen HH (2000) The mechanics of cell sorting and envelopment. J Biomech 33(7):845–851

    Article  Google Scholar 

  • Calvo J, Campos J, Caselles V, Sánchez O, Soler J (2015) Flux-saturated porous media equations and applications. EMS Surv Math Sci 2(1):131–218

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain MAJ, Lachowicz M, Szymanska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell–cell adhesion and cell-matrix adhesion. Math Model Methods Appl Sci 21(04):719–743

    Article  MathSciNet  MATH  Google Scholar 

  • Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15(12):813–824

    Article  Google Scholar 

  • Danuser G, Allard J, Mogilner A (2013) Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 29:501–528

    Article  Google Scholar 

  • Davies JA (2013) Mechanisms of morphogenesis. Academic, Cambridge

    Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  Google Scholar 

  • Dolak Y (2004) Advection dominated models for chemotaxis. PhD thesis, University of Vienna

  • Domschke P, Trucu D, Gerisch A, Chaplain MAJ (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

    Article  MathSciNet  MATH  Google Scholar 

  • Dormann D, Weijer CJ (2001) Propagating chemoattractant waves coordinate periodic cell movement in dictyostelium slugs. Development 128(22):4535–4543

    Google Scholar 

  • Dyson J, Gourley SA, Villella-Bressan R, Webb GF (2010) Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell–cell adhesion. SIAM J Math Anal 42(4):1784–1804

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Chapman JS, Maini PK (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908, pp 24–29

  • Estrada R, Kanwal RP (1993) Asymptotic analysis: a distributional approach. Birkhäuser, Boston

    MATH  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    Article  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  Google Scholar 

  • Gerisch A (2010) On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. IMA J Numer Anal 30(1):173–194

    Article  MathSciNet  MATH  Google Scholar 

  • Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704

    Article  MathSciNet  Google Scholar 

  • Gerisch A, Painter KJ (2010) Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion. In: Chauvière A, Preziosi L, Verdier C (eds) Cell mechanics: from single scale-based models to multiscale model. CRC Press, Boca Raton, pp 319–350

    Chapter  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  Google Scholar 

  • Hillen T (2002) Hyperbolic models for chemosensitive movement. Math Model Methods Appl Sci 12(07):1007–1034

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2005) On the \(L^2\)-moment closure of transport equations: the general case. Discret Contin Dyn Syst 5(2):299–318

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2013) Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis MA, P Maini SP (eds) Dispersal, individual movement and spatial ecology, vol 2071. Springer, Heidelberg, pp 177–222

    Chapter  Google Scholar 

  • Hillen T, Painter KJ, Schmeiser C (2007) Global existence for chemotaxis with finite sampling radius. Discret Contin Dyn Syst Ser B 7(1):125–144

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until present : the Keller–Segel model in chemotaxis and its consequences. Jahresber Dtsch Math Ver 105(3):103–165

    MathSciNet  MATH  Google Scholar 

  • Hughes BD (1995) Random walks and random environments: random walks, 1st edn. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Jilkine A, Edelstein-Keshet L (2011) A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput Biol 7(4):e1001,121

    Article  MathSciNet  Google Scholar 

  • Johnston ST, Simpson MJ, Baker RE (2012) Mean-field descriptions of collective migration with strong adhesion. Phys Rev E 85(5):051,922

    Article  Google Scholar 

  • Lauffenburger D (1989) A simple model for the effects of receptor–mediated cell-substratum adhesion on cell migration. Chem Eng Sci 44(9):1903–1914

    Article  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  Google Scholar 

  • Leckband D (2010) Design rules for biomolecular adhesion: lessons from force measurements. Annu Rev Chem Biomol Eng 1:365–389

    Article  Google Scholar 

  • Li L, Nørrelkke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS One 3(5):e2093

    Article  Google Scholar 

  • Middleton AM, Fleck C, Grima R (2014) A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion. J Theor Biol 359:220–232

    Article  MathSciNet  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38(6):534–570

    Article  MathSciNet  MATH  Google Scholar 

  • Mombach JC, Glazier JA, Raphael RC, Zajac M (1995) Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett 75(11):2244–2247

    Article  Google Scholar 

  • Nishiya N, Kiosses WB, Han J, Ginsberg MH (2005) An alpha4 integrin-paxillin-arf-gap complex restricts rac activation to the leading edge of migrating cells. Nat Cell Biol 7(4):343–352

    Article  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations ii: chemotaxis equations. SIAM J Appl Math 62:1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Dunbar S, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Ou C, Zhang Y (2013) Traveling wavefronts of nonlocal reaction-diffusion models for adhesion in cell aggregation and cancer invasion. Can Appl Math Q 21(1):21–62

    MathSciNet  MATH  Google Scholar 

  • Painter KJ (2009) Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull Math Biol 71(5):1117–1147

    Article  MathSciNet  MATH  Google Scholar 

  • Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q 10(4):501–543

    MathSciNet  MATH  Google Scholar 

  • Painter KJ, Armstrong NJ, Sherratt JA (2010) The impact of adhesion on cellular invasion processes in cancer and development. J Theor Biol 264(3):1057–1067

    Article  MathSciNet  Google Scholar 

  • Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A (2015) A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol 77(6):1132–1165

    Article  MathSciNet  MATH  Google Scholar 

  • Ridley AJ (2011) Life at the leading edge. Cell 145(7):1012–22

    Article  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel Ra, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  Google Scholar 

  • Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573–587

    Article  Google Scholar 

  • Schienbein M, Franke K, Gruler H (1994) Random walk and directed movement: comparison between inert particles and self-organized molecular machines. Phys Rev E 49(6):5462–5471

    Article  Google Scholar 

  • Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2008) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur J Appl Math 20(01):123

    Article  MathSciNet  MATH  Google Scholar 

  • Shi L, Yu Z, Mao Z, Xiao A (2014) A directed continuous time random walk model with jump length depending on waiting time. Sci World J 2014:1–4

  • Stevens A, Othmer HG (1997) Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J Appl Math 57(4):1044–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita Jb, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19,771–19,776

    Article  Google Scholar 

  • Turner S, Sherratt JA, Painter KJ, Savill N (2004) From a discrete to a continuous model of biological cell movement. Phys Rev E 69(2):021,910

    Article  MathSciNet  Google Scholar 

  • Van Kampen NG (2011) Stochastic processes in physics and chemistry. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  • Weiner OD (2002) Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 14(2):196–202

    Article  Google Scholar 

  • Weiner OD, Servant G, Parent CA, Devreotes PN, Bourne HR (2000) Cell polarity in response to chemoattractants. In: Drubin DG (ed) Cell polarity, 1st edn. Oxford University Press, Oxford, pp 201–239

    Google Scholar 

  • White MD, Plachta N (2015) How adhesion forms the early mammalian embryo, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  • Winkler M, Hillen T, Painter KJ (2017) Global solvability and explicit bounds for a non-local adhesion model (submitted)

  • Zaburdaev VY (2006) Random walk model with waiting times depending on the preceding jump length. J Stat Phys 123(4):871–881

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AB was supported by NSERC, Alberta Innovates and PIMS. TH was supported by NSERC. AG thanks the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation; EPSRC EP/K032208/1. KJP thanks the Politecnico di Torino for a Visiting Professor position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Buttenschön.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttenschön, A., Hillen, T., Gerisch, A. et al. A space-jump derivation for non-local models of cell–cell adhesion and non-local chemotaxis. J. Math. Biol. 76, 429–456 (2018). https://doi.org/10.1007/s00285-017-1144-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1144-3

Keywords

Mathematics Subject Classification

Navigation