Skip to main content
Log in

Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs)-reinforced polysulfone (PSU) nanocomposites were prepared through solution mixing of PSU and different weight percent of multi-walled carbon nanotubes (MWCNTs). Thermal properties of nanocomposites were characterized using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA studies revealed an increase in thermal stability of the PSU/MWCNTs nanocomposites, which is due to the hindrance of the nanodispered carbon nanotubes to the thermal transfer in nanocomposites and also due to higher thermal stability of CNTs. Morphological properties of nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscope (FESEM). The influence of CNTs loading on electrical properties of PSU/MWCNTs nanocomposites was studied by the measurement of AC and DC resistivity. Dielectric study of nanocomposites was carried out at different frequencies (10 Hz–1 MHz) by using LCR meter. An increase in dielectric constant and dielectric loss was observed with increase in CNTs content, which is due to the interfacial polarization between conducting CNTs and PSU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotubes/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    Article  CAS  Google Scholar 

  2. Teng CC, Huang YW, Yuen SM, Weng CC, Chen CH, Su SF (2008) Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites. Composites A 39:1869–1875

    Article  Google Scholar 

  3. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  4. Cadek M, Le Foulgoc B, Coleman JN, Barron V, Sandler J, Shaffer MSP, Fonseca A, Van ESM, Schulte K, Blau WJ (2002) Structural and electronic properties of molecular nanostructures. AIP Conf Proc Austria 633:562–565

    Article  CAS  Google Scholar 

  5. Chiang KH, Ping CW, Ming YS, Ho WH, Ming LT (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Compos Sci Technol 65:1703–1710

    Article  Google Scholar 

  6. Ma CCM, Huang YL, Kuan HC, Chiu YS (2005) Preparation and electromagnetic interference shielding characteristics of novel carbon nanotube/siloxane/poly-(urea urethane) nanocomposites. J Polym Sci B 43:345–3458

    Article  CAS  Google Scholar 

  7. Liu TX, Tong YJ, Zhang WD (2007) Preparation and characterization of carbon nanotube/polyetherimide nanocomposites films. Compos Sci Technol 67:406–412

    Article  CAS  Google Scholar 

  8. Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M (2005) Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly (methyl methacrylate) composites. Macromol Res 13:206–211

    Article  CAS  Google Scholar 

  9. Chou WJ, Wang CC, Chen CY (2008) Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes. Compos Sci Technol 68:2208–2213

    Article  CAS  Google Scholar 

  10. Jiang X, Bin Y, Matsuo M (2005) Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46:7418–7424

    Article  CAS  Google Scholar 

  11. Kuan CF, Kuan HC, Chen CH (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69:1395–1398

    Article  CAS  Google Scholar 

  12. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotubes/polymer composites for electrical applications. Appl Phys Lett 83:2929–2930

    Article  Google Scholar 

  13. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes–polyepoxy composites. Macromolecules 36:5187–5194

    Article  CAS  Google Scholar 

  14. Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001) Transport properties of PMMA-carbon nanotubes composites. Synth Met 121:1215–1216

    Article  CAS  Google Scholar 

  15. Stephan C, Phap TN, Lahr B, Blau W, Lefrant S, Chauvet O (2002) Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. J Mater Res 17:396–400

    Article  CAS  Google Scholar 

  16. Isayev AI, Kumar R, Lewis TM (2009) Ultrasound assisted twin screw extrusion of polymer nanocomposites containing carbon nanotubes. Polymer 50:250–260

    Article  CAS  Google Scholar 

  17. Park C, Ounaies Z, Watson KA, Crooks RE, Smith JJ, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  CAS  Google Scholar 

  18. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5dioctoxy-p phenylenevinylene) and carbon nanotubes: a novel materials for molecular optoelectronics. Adv Mater 10:1091–1093

    Article  CAS  Google Scholar 

  19. Chen J, Liu H, Weimer W, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional and conjugated polymers. J Am Chem Soc 124:9034–9035

    Article  CAS  Google Scholar 

  20. Tang BZ, Xu H (1999) Preparation, alignment, and optical properties of soluble poly(phenylacetylene) wrapped carbon nanotubes. Macromolecules 32:2569–2576

    Article  CAS  Google Scholar 

  21. Barraza HJ, Pompeo F, Rear EA, Resasco DE (2002) SWNT-filled thermoplastic and elastomeric composites by miniemulsion polymerization. Nano Lett 2:797–802

    Article  CAS  Google Scholar 

  22. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single walled carbon nanotubes. J Phys Chem B 106:5852–5858

    Article  CAS  Google Scholar 

  23. Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single walled carbon nanotube in epoxy composites through functionalization. Nano Lett 3:1107–1113

    Article  CAS  Google Scholar 

  24. Duesberg GS, Muster J, Byrne HJ, Roth S, Burghard M (1999) Towards processing of carbon nanotubes for technical applications. Appl Phys A 69:269–274

    Article  CAS  Google Scholar 

  25. Stevens MP (1999) In polymer chemistry: an introduction, 3rd edn. Oxford University Press, Oxford, p 311

    Google Scholar 

  26. Vaudreuil S, Labzour A, Ray SS, Mabrouk KE, Bousmina M (2007) Dispersion characteristics and properties of poly(methyl methacrylate)/multi-walled carbon nanotubes nanocomposites. Nanosci Nanotechnol 7:2349–2355

    Article  CAS  Google Scholar 

  27. Chipara MI (1997) The glass transition phenomenon in macromolecular systems. Physica B 234–236:263–265

    Article  Google Scholar 

  28. Sperling LH (2001) Introduction to physical polymer science, 3rd edn. Wiley, New York, NY, USA

    Google Scholar 

  29. Saleem A, Frormann L, Iqbal A (2007) Mechanical, thermal and electrical resistivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J Polym Res 14:121–127

    Article  CAS  Google Scholar 

  30. Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in-iron particles loaded-polymer composites. Composites A 43:1187–1198

    Article  Google Scholar 

  31. Dang ZM, Wang L, Yin Y, Zhang Q, Lei Q (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  32. Renukappa NM, Siddaramaiah, Samuel RDS, Rajan JS, Lee JH (2009) Dielectric properties of carbon black: SBR composites. Mater Sci Mater Electron 20:648–656

    Article  CAS  Google Scholar 

  33. Panwar V, Kang B, Park J, Park S, Mehra RM (2009) Study of dielectric properties of styrene-acrylonitrile graphite sheets composites in low and high frequency region. Eur Polym J 45:1777–1784

    Article  CAS  Google Scholar 

  34. Simon GP (1994) Dielectric relaxation spectroscopy of thermoplastic polymers and blends. Mater Forum 18:235–264

    CAS  Google Scholar 

  35. Debnath S, De PP, Khastgir D (1988) Ambient electrical properties of mica-styrene-butadiene rubber composites. Rubber Chem Technol 61:555–567

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this work provided by Kalpana Chawla Space Technology Cell, IIT–Kharagpur is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Chaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, L., Rahaman, M., Khastgir, D. et al. Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym. Bull. 67, 1029–1044 (2011). https://doi.org/10.1007/s00289-011-0479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0479-y

Keywords

Navigation