Skip to main content
Erschienen in: Polymer Bulletin 3/2016

07.09.2015 | Original Paper

Novel melt-down neutralization method for synthesis of chitosan–silver scaffolds for tissue engineering applications

verfasst von: M. Monsoor Shaik, Meenal Kowshik

Erschienen in: Polymer Bulletin | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The synthesis of chitosan–silver scaffolds (CS–Ag) by a novel method of melt-down neutralization, followed by solvent curing and freeze drying techniques is reported. The slow and steady melting of the frozen chitosan allows uniform neutralization. The scaffolds were characterized by X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Enzymatic degradation of the scaffold was studied using lysozyme. Silver release studies showed that there was a slow and sustained release of silver and these CS–Ag scaffolds exhibited antibacterial properties against representative Gram-positive and Gram-negative bacteria. Biocompatibility studies of the CS–Ag scaffolds on keratinocytes (HaCaT) showed growth and proliferation without exhibiting any toxicity. These CS–Ag scaffolds are proposed as promising candidates for tissue engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotech 21(5):513–518CrossRef Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotech 21(5):513–518CrossRef
3.
Zurück zum Zitat Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen Tissue Engineering: development of Novel Biomaterials and Applications. Pediatr Res 63(5):492–496CrossRef Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen Tissue Engineering: development of Novel Biomaterials and Applications. Pediatr Res 63(5):492–496CrossRef
5.
Zurück zum Zitat Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331–336. doi:10.1016/S0142-9612(00)00188-5 CrossRef Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331–336. doi:10.​1016/​S0142-9612(00)00188-5 CrossRef
6.
Zurück zum Zitat Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Chandra A, Williams DJ, Howdle SM, Shakesheff KM (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cells Mater 14:64–77 Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Chandra A, Williams DJ, Howdle SM, Shakesheff KM (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cells Mater 14:64–77
7.
Zurück zum Zitat Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357. doi:10.1002/jbm.1028 CrossRef Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357. doi:10.​1002/​jbm.​1028 CrossRef
9.
Zurück zum Zitat LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef
10.
Zurück zum Zitat Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric Scaffolds in tissue engineering application: a review. Int J Polym Sci. doi:10.1155/2011/290602 Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric Scaffolds in tissue engineering application: a review. Int J Polym Sci. doi:10.​1155/​2011/​290602
13.
Zurück zum Zitat Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55(1):20–27CrossRef Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55(1):20–27CrossRef
18.
Zurück zum Zitat Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA (2011) Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen 19(3):400–410CrossRef Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA (2011) Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen 19(3):400–410CrossRef
19.
Zurück zum Zitat Roy S, Elgharably H, Sinha M, Ganesh K, Chaney S, Mann E, Miller C, Khanna S, Bergdall VK, Powell HM (2014) Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 233(4):331–343. doi:10.1002/path.4360 CrossRef Roy S, Elgharably H, Sinha M, Ganesh K, Chaney S, Mann E, Miller C, Khanna S, Bergdall VK, Powell HM (2014) Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 233(4):331–343. doi:10.​1002/​path.​4360 CrossRef
20.
21.
Zurück zum Zitat Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010) Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26(7):851–858. doi:10.1080/08927014.2010.527000 CrossRef Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010) Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26(7):851–858. doi:10.​1080/​08927014.​2010.​527000 CrossRef
22.
Zurück zum Zitat Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178. doi:10.1128/AEM.02001-07 CrossRef Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178. doi:10.​1128/​AEM.​02001-07 CrossRef
23.
Zurück zum Zitat Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593. doi:10.1128/aem.71.11.7589-7593.2005 CrossRef Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593. doi:10.​1128/​aem.​71.​11.​7589-7593.​2005 CrossRef
25.
26.
Zurück zum Zitat Kostenko V, Lyczak J, Turner K, Martinuzzi RJ (2010) Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 54(12):5120–5131CrossRef Kostenko V, Lyczak J, Turner K, Martinuzzi RJ (2010) Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 54(12):5120–5131CrossRef
27.
Zurück zum Zitat Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R (2014) Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnology 12(1):2CrossRef Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R (2014) Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnology 12(1):2CrossRef
29.
Zurück zum Zitat Madhavan RV, Rosemary MJ, Nandkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly (varepsilon-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part A 17(3–4):439–449. doi:10.1089/ten.TEA.2009.0791 CrossRef Madhavan RV, Rosemary MJ, Nandkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly (varepsilon-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part A 17(3–4):439–449. doi:10.​1089/​ten.​TEA.​2009.​0791 CrossRef
30.
34.
Zurück zum Zitat Kasaai MR (2007) Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydr Polym 68(3):477–488. doi:10.1016/j.carbpol.2006.11.006 CrossRef Kasaai MR (2007) Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydr Polym 68(3):477–488. doi:10.​1016/​j.​carbpol.​2006.​11.​006 CrossRef
35.
Zurück zum Zitat Pawar HV, Boateng JS, Ayensu I, Tetteh J (2014) Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing. J Pharm Sci 103(6):1720–1733. doi:10.1002/jps.23968 CrossRef Pawar HV, Boateng JS, Ayensu I, Tetteh J (2014) Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing. J Pharm Sci 103(6):1720–1733. doi:10.​1002/​jps.​23968 CrossRef
36.
Zurück zum Zitat He Q, Ao Q, Gong Y, Zhang X (2011) Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med 22(12):2791–2802. doi:10.1007/s10856-011-4444-y CrossRef He Q, Ao Q, Gong Y, Zhang X (2011) Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med 22(12):2791–2802. doi:10.​1007/​s10856-011-4444-y CrossRef
37.
Zurück zum Zitat Orrego CE, Valencia JS (2009) Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method. Bioprocess Biosyst Eng 32(2):197–206. doi:10.1007/s00449-008-0237-1 CrossRef Orrego CE, Valencia JS (2009) Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method. Bioprocess Biosyst Eng 32(2):197–206. doi:10.​1007/​s00449-008-0237-1 CrossRef
38.
Zurück zum Zitat Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F, Tromba G, Favia P (2014) Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering. Plasma Processes Polym 11(2):184–195. doi:10.1002/ppap.201300149 CrossRef Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F, Tromba G, Favia P (2014) Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering. Plasma Processes Polym 11(2):184–195. doi:10.​1002/​ppap.​201300149 CrossRef
39.
Zurück zum Zitat Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Lauprêtre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38(15):6629–6639. doi:10.1021/ma0506031 CrossRef Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Lauprêtre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38(15):6629–6639. doi:10.​1021/​ma0506031 CrossRef
40.
41.
Zurück zum Zitat Haugh MG, Murphy CM, O’Brien FJ (2010) Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods 16(5):887–894. doi:10.1089/ten.TEC.2009.0422 CrossRef Haugh MG, Murphy CM, O’Brien FJ (2010) Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods 16(5):887–894. doi:10.​1089/​ten.​TEC.​2009.​0422 CrossRef
42.
Zurück zum Zitat Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121(2):317–324CrossRef Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121(2):317–324CrossRef
43.
Zurück zum Zitat Doillon CJ, Whyne CF, Brandwein S, Silver FH (1986) Collagen-based wound dressings: control of the pore structure and morphology. J Biomed Mater Res 20(8):1219–1228. doi:10.1002/jbm.820200811 CrossRef Doillon CJ, Whyne CF, Brandwein S, Silver FH (1986) Collagen-based wound dressings: control of the pore structure and morphology. J Biomed Mater Res 20(8):1219–1228. doi:10.​1002/​jbm.​820200811 CrossRef
44.
Zurück zum Zitat C-m Han, L-p Zhang, J-z Sun, H-f Shi, Zhou J, C-y Gao (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11(7):524–530. doi:10.1631/jzus.B0900400 CrossRef C-m Han, L-p Zhang, J-z Sun, H-f Shi, Zhou J, C-y Gao (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11(7):524–530. doi:10.​1631/​jzus.​B0900400 CrossRef
45.
Zurück zum Zitat López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2012) Silver Ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem 61(1):260–267. doi:10.1021/jf304006y CrossRef López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2012) Silver Ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem 61(1):260–267. doi:10.​1021/​jf304006y CrossRef
46.
Zurück zum Zitat Saraswathy G, Pal S, Rose C, Sastry TP (2001) A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin. Bull Mater Sci 24(4):415–420. doi:10.1007/BF02708641 CrossRef Saraswathy G, Pal S, Rose C, Sastry TP (2001) A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin. Bull Mater Sci 24(4):415–420. doi:10.​1007/​BF02708641 CrossRef
47.
Zurück zum Zitat Mallikarjuna K, Narasimha G, Dillip G, Praveen B, Shreedhar B, Lakshmi CS, Reddy B, Raju BDP (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nanomater Biostruct 6(1):181–186 Mallikarjuna K, Narasimha G, Dillip G, Praveen B, Shreedhar B, Lakshmi CS, Reddy B, Raju BDP (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nanomater Biostruct 6(1):181–186
48.
Zurück zum Zitat Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446CrossRef Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446CrossRef
49.
51.
Zurück zum Zitat Tripathi S, Mehrotra G, Dutta P (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34(1):29–35CrossRef Tripathi S, Mehrotra G, Dutta P (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34(1):29–35CrossRef
52.
Zurück zum Zitat Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J (2013) Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1):015101CrossRef Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J (2013) Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1):015101CrossRef
53.
Zurück zum Zitat Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2(2):374–398CrossRef Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2(2):374–398CrossRef
54.
Zurück zum Zitat Hsieh W-C, Chang C-P, Lin S-M (2007) Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B 57(2):250–255CrossRef Hsieh W-C, Chang C-P, Lin S-M (2007) Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B 57(2):250–255CrossRef
55.
Zurück zum Zitat Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B 88(1):325–331. doi:10.1016/j.colsurfb.2011.07.009 CrossRef Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B 88(1):325–331. doi:10.​1016/​j.​colsurfb.​2011.​07.​009 CrossRef
56.
Zurück zum Zitat Roy M, Mukherjee P, Mandal BP, Sharma RK, Tyagi AK, Kale SP (2012) Biomimetic synthesis of nanocrystalline silver sol using cysteine: stability aspects and antibacterial activities. RSC Adv 2(16):6496–6503CrossRef Roy M, Mukherjee P, Mandal BP, Sharma RK, Tyagi AK, Kale SP (2012) Biomimetic synthesis of nanocrystalline silver sol using cysteine: stability aspects and antibacterial activities. RSC Adv 2(16):6496–6503CrossRef
57.
Zurück zum Zitat Jadalannagari S, Deshmukh K, Ramanan SR, Kowshik M (2014) Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl Nanosci 4(2):133–141CrossRef Jadalannagari S, Deshmukh K, Ramanan SR, Kowshik M (2014) Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl Nanosci 4(2):133–141CrossRef
58.
Zurück zum Zitat Jung KH, Huh MW, Meng W, Yuan J, Hyun SH, Bae JS, Hudson SM, Kang IK (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5):2816–2823CrossRef Jung KH, Huh MW, Meng W, Yuan J, Hyun SH, Bae JS, Hudson SM, Kang IK (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5):2816–2823CrossRef
59.
Zurück zum Zitat Kebbekus BB (2003) Preparation of samples for metals analysis. Sample Prep Tech Anal Chem 162:227CrossRef Kebbekus BB (2003) Preparation of samples for metals analysis. Sample Prep Tech Anal Chem 162:227CrossRef
60.
Zurück zum Zitat Naik K, Chatterjee A, Prakash H, Kowshik M (2013) Mesoporous TiO2 nanoparticles containing Ag ion with excellent antimicrobial activity at remarkable low silver concentrations. J Biomed Nanotechnol 9(4):664–673CrossRef Naik K, Chatterjee A, Prakash H, Kowshik M (2013) Mesoporous TiO2 nanoparticles containing Ag ion with excellent antimicrobial activity at remarkable low silver concentrations. J Biomed Nanotechnol 9(4):664–673CrossRef
62.
Zurück zum Zitat Li J, Chen Y, Mak AF, Tuan RS, Li L, Li Y (2010) A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomater 6(6):2013–2019. doi:10.1016/j.actbio.2009.12.008 CrossRef Li J, Chen Y, Mak AF, Tuan RS, Li L, Li Y (2010) A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomater 6(6):2013–2019. doi:10.​1016/​j.​actbio.​2009.​12.​008 CrossRef
63.
Zurück zum Zitat Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Metals Mater Miner 16(1):37–44 Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Metals Mater Miner 16(1):37–44
64.
Zurück zum Zitat Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods 17(7):717–730CrossRef Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods 17(7):717–730CrossRef
65.
Zurück zum Zitat Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface 8(57):540–554CrossRef Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface 8(57):540–554CrossRef
Metadaten
Titel
Novel melt-down neutralization method for synthesis of chitosan–silver scaffolds for tissue engineering applications
verfasst von
M. Monsoor Shaik
Meenal Kowshik
Publikationsdatum
07.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 3/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1522-1

Weitere Artikel der Ausgabe 3/2016

Polymer Bulletin 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.