Skip to main content
Log in

Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide/acrylic acid) for drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The significant developments in the field of polymer have advanced the synthesis of polymer-based materials and have expanded their use in a wide variety of applications. Today, polymers can be designed to change their properties in response to a single stimulus or multiple stimuli. Such types of polymers are called stimuli-sensitive or stimuli-responsive polymers, and have been utilized for controlled release in the field of biomedicine. Herein, we report the use of alginate (SA) based graft copolymer with poly(N-isopropylacrylamide) (PIPAAm) and poly(acrylic acid) (PAA) to synthesize dual stimuli-sensitive beads via microwave-assisted graft copolymerization method for controlled release of indomethacin (IND). It is demonstrated that the polymer beads composed of SA-g-PIPAAm/PAA are sensitive to pH and temperature. The structure of successfully prepared stimuli-sensitive beads by cross-linking via glutaraldehyde is characterized by FTIR, X-RD and SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wandera D, Wickramasinghe SR, Husson SM (2010) Stimuli-responsive membranes. J Membr Sci 357:6–35

    Article  CAS  Google Scholar 

  2. Babu VR, Rao KSVK, Sairam M, Naidu BVK, Hosamani KM, Aminabhavi TM (2006) pH-Sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 99:2671–2678

    Article  CAS  Google Scholar 

  3. Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26:382–392

    Article  CAS  Google Scholar 

  4. Hoffmann J, Plotner M, Kuckling D, Fischer WJ (1999) Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens Actuat A Phys 77:139–144

    Article  CAS  Google Scholar 

  5. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    Article  CAS  Google Scholar 

  6. Don T-M, Chen H-R (2005) Synthesis and characterization of AB-crosslinked graft copolymers based on maleilated chitosan and N-isopropylacrylamide. Carbohydr Polym 61:334–347

    Article  CAS  Google Scholar 

  7. Zhang L, Wang L, Guo B, Ma PX (2014) Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 103:110–118

    Article  CAS  Google Scholar 

  8. Lee H, Peietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35:24–44

    Article  CAS  Google Scholar 

  9. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 65(4):497–514

    Google Scholar 

  10. Chan A, Orme RP, Fricker RA, Roach P (2013) Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 58:1655–1670

    Google Scholar 

  11. Curcio M, Spizzirri UG, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N (2010) Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 76:48–55

    Article  CAS  Google Scholar 

  12. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  Google Scholar 

  13. Yiğitoğlu M, Aydın G, Işıklan N (2014) Microwave-assisted synthesize of alginate-g-polyvinylpyrrolidone and its application in controlled release. Polym Bull 71:385–414

    Article  Google Scholar 

  14. Lee KY, Mooney D (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  15. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  Google Scholar 

  16. Işıklan N, Küçükbalcı G (2012) Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharm Biopharm 82:316–331

    Article  Google Scholar 

  17. Işıklan N, İnal M, Kurşun F, Ercan G (2011) pH responsive itaconic acid grafted alginate microspheres for the controlled release of nifedipine. Carbohydr Polym 84:933–943

    Article  Google Scholar 

  18. Abou el Ela AESF, Hassan MA, El- Maraghy DA (2014) Ketorolac tromethamine floating beads for oral application: characterization and in vitro/in vivo evaluation. Saudi Pharm J 22:349–359

    Article  Google Scholar 

  19. Işıklan N, İnal M, Yiğitoğlu M (2008) Synthesis and characterization of poly(N-vinyl-2-pyrrolidone) grafted sodium alginate hydrogel beads for the controlled release of indomethacin. J Appl Polym Sci 110:481–493

    Article  Google Scholar 

  20. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymer. Pharm Acta Helv 60:110–111

    CAS  Google Scholar 

  21. Mishra S, Sen G (2011) Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int J Biol Macromol 49:591–598

    Article  CAS  Google Scholar 

  22. Işıklan N, Kurşun F, İnal M (2010) Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr Polym 79:665–672

    Article  Google Scholar 

  23. Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-Sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 4:517–523

    Article  Google Scholar 

  24. Wang NFQ, Li P, Zhang JP, Wang AQ, Wei Q (2010) A novel pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Drug Dev Ind Pharm 36:867–877

    Article  CAS  Google Scholar 

  25. Yua S, Lüa Z, Chen Z, Liu X, Liu M, Gao C (2011) Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties. J Membr Sci 371:293–306

    Article  Google Scholar 

  26. Beattie DA, Addai-Mensah J, Beaussart A, Franks GV, Yeap K-Y (2014) In situ particle film ATR FTIR spectroscopy of poly(N-isopropyl acrylamide) (PNIPAM) adsorption onto talc. Phys Chem Chem Phys 16:25143–25151

    Article  CAS  Google Scholar 

  27. Katsumoto Y, Tanaka T, Sato H, Ozaki Y (2002) Conformational change of poly(N-isopropylacrylamide) during the coil-globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculation. J Phys Chem A 106:3429–3435

    Article  CAS  Google Scholar 

  28. Ahmed Z, Gooding EA, Pimenov KV, Wang L, Asher SA (2009) UV resonance raman determination of molecular mechanism of poly(N-isopropylacrylamide) volume phase transition. J Phys Chem B 113(13):4248–4256

    Article  CAS  Google Scholar 

  29. Smitha B, Sridhar S, Khan AA (2005) Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur Polym J 41:1859–1866

    Article  CAS  Google Scholar 

  30. Murillo-Álvarez JI, Hernández-Carmona G (2007) Monomer composition and sequence of sodium alginate extracted at pilot plant scale from three commercially important seaweeds from Mexico. J Appl Phycol 19:545–548

    Article  Google Scholar 

  31. Kaur I, Kumar R, Sharma N (2010) A comparative study on the graft copolymerization of acrylic acid onto rayon fiber by a ceric ion redox system and a γ-radiation method. Carbohydr Res 345:2164–2173

    Article  CAS  Google Scholar 

  32. O’Brien M, McCauley J, Cohen E (1984) Indomethacin. In: Florey K (ed) Analytical profiles of drug substances, vol 13. Academic Press, New York, pp 222–227

  33. Panigrahy RN, Chinnala KM (2014) Formulation and evaluation of indomethacin solid dispersion by using hydrophilic polymers. Int J Pharm Res Health Sci 2(1):87–95

    CAS  Google Scholar 

  34. Gonga K, Rehmanb IU, Darra JA (2008) Characterization and drug release investigation of amorphous drug–hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation. J Pharm Biomed Anal 48:1112–1119

    Article  Google Scholar 

  35. Ramesh Babu V, Sairam M, Hosamani KM, Aminabhavi TM (2006) Preparation and characterization of novel semi-interpenetrating 2-hydroxyethyl methacrylate-g-chitosan copolymeric microspheres for sustained release of indomethacin. J Appl Polym Sci 106:3778–3785

    Article  Google Scholar 

  36. Thakur A, Wanchoo RK, Singh P (2011) Hydrogels of poly(acrylamide-co-acrylic acid): in-vitro study on release of gentamicin sulfate. Chem Biochem Eng Q 25(4):471–482

    CAS  Google Scholar 

  37. Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly (ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324(2):103–115

    Article  CAS  Google Scholar 

  38. Shi J, Zhang Z, Qi W, Cao S (2012) Hydrophobically modified biomineralized polysaccharide alginate membrane for sustained smart drug delivery. Int J Biol Macromol 50:747–753

    Article  CAS  Google Scholar 

  39. Reddy KM, Babu VR, Rao KSVK, Subha MCS, Rao KC, Sairam M, Aminabhavi TM (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 107:2820–2829

    Article  CAS  Google Scholar 

  40. Temtem M, Barroso T, Casimiro T, Mano JF, Aguiar-Ricardo A (2012) Dual stimuli responsive poly(N-isopropylacrylamide) coated chitosan scaffolds for controlled release prepared from a non residue technology. J Supercrit Fluids 66:398–404

    Article  CAS  Google Scholar 

  41. Dadsetan M, Taylor KE, Yong C, Bajzer Z, Lu L, Yaszemski MJ (2013) Controlled release of doxorubicin from pH-responsive microgels. Acta Biomater 9(3):5438–5446

    Article  CAS  Google Scholar 

  42. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Kirikkale University for financial support with the project number of 2011/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Işıklan.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işıklan, N., Küçükbalcı, G. Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide/acrylic acid) for drug delivery. Polym. Bull. 73, 1321–1342 (2016). https://doi.org/10.1007/s00289-015-1550-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1550-x

Keywords

Navigation