Skip to main content
Log in

Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Hydrophobins are small, cysteine-rich, secreted proteins, ubiquitously produced by filamentous fungi that are speculated to function in fungal growth, cell surface properties, and development, although this has been rigorously tested for only a few species. Herein, we report identification of three hydrophobin genes from the entomopathogenic fungus, Metarhizium brunneum, and functional characterization of strains lacking these genes. One gene (HYD1/ssgA) encodes a class I hydrophobin identified previously. Two new genes, HYD3 and HYD2, encode a class I and class II hydrophobin, respectively. To examine function, we deleted all three separately, from the M. brunneum strain KTU-60 genome, using Agrobacterium tumefaciens-mediated transformation. Deletion strains were screened for alterations in developmental phenotypes including growth, sporulation, pigmentation, colony surface properties, and virulence to insects. All deletion strains were reduced in their ability to sporulate and showed alterations in wild-type pigmentation, but all retained wild-type hydrophobicity, except for one individual hyd3 mutant. Complementation with the wild-type HYD3 gene restored hydrophobicity. Each gene, present as a single copy in the genome, showed differential expression patterns dependent on the developmental stage of the fungus. When Spodoptera exigua (beet armyworm) larvae were treated with either conidia or blastospores of each hyd mutant, reductions in virulence and delayed mortality were observed as compared to WT. Together, these results suggest that hydrophobins are differentially expressed and may have distinct, but compensating roles, in conidiation, pigmentation, hydrophobicity, and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Great Britain, pp 1–19

    Google Scholar 

  • Ando A, Harada A, Miura K, Tamai Y (2001) A gene encoding a hydrophobin, fvh1, is specially expressed after the induction of fruiting in the edible mushroom Flammulina velutipes. Curr Genet 39:190–197

    Article  PubMed  CAS  Google Scholar 

  • Askolin S, Penttila M, Wösten HA, Nakari-Setala T (2005) The Trichoderma reesei hydrophobin genes hfb1 and hfb2 have diverse functions in fungal development. FEMS Microbiol Lett 253:281–288

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Askolin S, Hörhammer N, Tenkanen M, Linder M, Penttila M, Nakari-Setala T (2002) Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei. Appl Microbiol Biotechnol 58:721–727

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of tlie conidial rodlet layer. Genes Dev 6:2382–2394

    Article  PubMed  CAS  Google Scholar 

  • Bidochka MJ, De Koning J, St Leger RJ (2001) Analysis of a genomic clone of hydrophobin (ssgA) from the entomopathogenic fungus Metarhizium brunneum. Mycol Res 105:360–364

    Article  CAS  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530

    Article  PubMed  CAS  Google Scholar 

  • Boucias DG, Pendland JC, Latge JP (1988) Nonspecific factors involved in the attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol 54:1795–1805

    PubMed  CAS  Google Scholar 

  • Castrillo LA, Roberts DW, Vandenberg JD (2005) The fungal past, present, and future: Germination, ramification, and reproduction. J Invertebr Pathol 89:46–56

    Article  PubMed  Google Scholar 

  • Charnley AB, St Leger RJ (1991) The role of cuticle-degrading enzymes in fungal pathogenesis in insects. In: Hoch HC, Cole GT (eds) The fungal spore and disease initiation in plants and animals. Plenum Press, New York, pp 267–286

    Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203

    Article  PubMed  CAS  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    Article  CAS  Google Scholar 

  • Donzelli BGG, Krasnoff SB, Churchill ACL, Vandenberg JD, Gibson DM (2010) Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet 56:151–162

    Article  PubMed  CAS  Google Scholar 

  • Donzelli BGG, Krasnoff SB, Sun-Moon Y, Churchill ACL, Gibson DM (2012) Genetic basis of destruxin production in Metarhizium robertsii. Curr Genet. doi:10.1007/s00294-012-0368-4

  • Dublessis S, Sorin C, Voiblet C, Palin B, Martin F, Tagu D (2001) Cloning and expression analysis of a new hydrophobin cDNA from the ectomycorrhizal basidiomycete Pisolithus. Curr Genet 39:335–339

    Article  Google Scholar 

  • Fang W, Bidochka MJ (2006) Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium brunneum using quantitative real-time RT-PCR. Mycol Res 110:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Pei Yan, Bidochka MJ (2007) A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Pava-Ripoll M, Wang S, St Leger R (2009) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Gen Biol 46:277–285

    Article  CAS  Google Scholar 

  • Fuchs U, Czymmekb KJ, Sweigard JA (2004) Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Gen Biol 41:852–864

    Article  CAS  Google Scholar 

  • Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35:e55

    Article  PubMed  Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 361–405

    Chapter  Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  • Izumitsu K, Kimura S, Kobayashi H, Morita A, Saitoh Y, Tanaka C (2010) Class I hydrophobin BcHpb1 is important for adhesion but not for later infection of Botrytis cinerea. J Gen Plant Pathol 76:254–260

    Article  CAS  Google Scholar 

  • Jensen BG, Andersen MR, Pederson MH, Frisvad JC, Sondergaard I (2010) Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Research Notes 3:344

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak P, Kim DH, Turina M, Van Alfen NK (2005) A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryot Cell 4:931–936

    Article  PubMed  CAS  Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Gen Biol 23:18–33

    Article  CAS  Google Scholar 

  • Khetan S (2001) Microbial pest control. Marcel Dekker, New York

    Google Scholar 

  • Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Gen Biol 43:283–294

    Article  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 4:299–306

    Article  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    Article  PubMed  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setala T, Penttil ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  • Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68:1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Mikus M, Hatvani L, Neuhof T, Komoń-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, von Döhren H, Kubicek CP (2009) Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Environ Microbiol 75:3222–3229

    Article  PubMed  CAS  Google Scholar 

  • Moon Y-S, Donzelli BD, Krasnoff SB, McLane H, Griggs MH, Cooke P, Vandenberg JD, Gibson DM, Churchill ACL (2008) Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Appl Environ Microbiol 74:4366–4380

    Article  PubMed  CAS  Google Scholar 

  • Mosbach A, Leroch M, Mendgen KW, Hahn M (2011) Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea. BMC Microbiol 11:10

    Article  PubMed  CAS  Google Scholar 

  • Muñoz G, Nakari-Setälä T, Agosin E, Penttilä M (1997) Hydrophobin gene srh1, expressed during sporulation of the biocontrol agent Trichoderma harzianum. Curr Genet 32:225–230

    Article  PubMed  Google Scholar 

  • Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant-Microbe Interact 14:580–584

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  • Paris S, Debeaupuis JP, Crameri R, Carey M, Charles F, Prevost MC, Schmitt C, Philippe B, Latge JP (2003) Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Parta M, Chang Y, Rulong S, Pinto-Dasilva P, Kwon-Chung KJ (1994) HYPI, a hydrophobin gene from Aspergillus fumigatus, complements the rodletless phenotype in Aspergillus nidulans. Infect Immun 62:4389–4395

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Santos C, Labarère J (1999) Aa-Pri2, a single-copy gene from Agrocybe aegerita, specifically expressed during fruiting initiation, encodes a hydrophobin with a leucine-zipper domain. Curr Genet 35:564–570

    Article  PubMed  CAS  Google Scholar 

  • Segers GC, Nuss DL (2003) Constitutively activated Ga negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasitica. Fungal Gen Biol 38:198–208

    Article  CAS  Google Scholar 

  • Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, von Döhren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351

    Article  PubMed  CAS  Google Scholar 

  • Sevim A, Demir I, Höfte M, Humber RA, Demirbag Z (2010) Isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. Biocontrol 55:279–297

    Article  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    PubMed  CAS  Google Scholar 

  • St Leger RJ (2007) Metarhizium anisopliae as a model for studying bioinsecticidal host pathogen interactions. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, The Netherlands, pp 179–204

    Chapter  Google Scholar 

  • St Leger RJ, Wang C (2010) Entomopathogenic fungi and genomics era. In: Stock SP, Vanderberg J, Boemare N, Glazer I (eds) Insect pathogens: molecular approaches and techniques. Massachusetts, USA, pp 365–395

    Google Scholar 

  • St Leger RJ, Frank DC, Roberts DW, Staples RC (1992a) Molecular cloning and regulatory analysis of the cuticle-degrading proteasestructural gene from entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem 204:991–1001

    Article  PubMed  CAS  Google Scholar 

  • St Leger RJ, Staples RC, Roberts DW (1992b) Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Gene 120:119–124

    Article  PubMed  CAS  Google Scholar 

  • St Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354

    Article  PubMed  CAS  Google Scholar 

  • Stevens R (1974) Mycology guidebook. University of Washington Press, Seattle

    Google Scholar 

  • Szilvay GR (2007) Self-assembly of hydrophobin proteins from the fungus Trichoderma reesei. Dissertation, University of Helsinki

  • Talbot NJ, Ebbole DJ, Liamera JE (1993) ldentification and characterization of MPGI, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thau N, Monod M, Crestani B, Rolland C, Tronchin G, Latgi JP, Paris S (1994) Rodletless mutants of Aspergillus fumigatus. Infect Immun 62:4380–4388

    Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002) Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol 154:175–184

    Article  Google Scholar 

  • Van Wetter MA, Schuren FHJ, Schuurs TA, Wessels JGH (1996) Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140:265–269

    Article  Google Scholar 

  • Vries OMH, Moore S, Arntz C, Wessels JGH, Tudzynski P (1999) Identification and characterization of a tri-partite hydrophobin from Claviceps fusiformis; a novel type of class II hydrophobin. Eur J Biochem 262:377–385

    Article  PubMed  Google Scholar 

  • Whiteford JR, Spanu PD (2001) The hydrophobin HCF-1 of Cladosporium fulvum is required for efficient water-mediated dispersal of conidia. Fungal Gen Biol 32:159–168

    Article  CAS  Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  PubMed  Google Scholar 

  • Wösten HAB, Wessels JGH (1997) Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363–374

    Article  Google Scholar 

  • Wösten HAB, Schuren FHJ, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854

    PubMed  Google Scholar 

  • Ypsilos IK, Magan N (2004) Impact of water-stress and washing treatments on production, synthesis and retention of endogenous sugar alcohols and germinability of Metarhizium anisopliae blastospores. Mycol Res 108:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Micro 80:811–826

    Article  CAS  Google Scholar 

  • Zimmermann G (1993) The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic Sci 37:375–379

    Google Scholar 

Download references

Acknowledgments

A. Sevim was supported by the Council of Higher Education of Turkey (YOK) and performed the majority of the research in the Turgeon laboratory at Cornell. We thank Dr. Chengshu Wang (Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China) for providing the HYD3 gene sequence. We also thank Dr. Richard Humber (Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, USDA-ARS, Tower Road, Ithaca, NY 14853, USA) for help in assessing some morphological characters of the WT and mutant strains, and J. Bischoff (USDA, APHIS, Beltsville, MD) for molecular identification of KTU-60 as M. brunneum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gillian Turgeon.

Additional information

Communicated by J. Heitman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2,495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevim, A., Donzelli, B.G.G., Wu, D. et al. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet 58, 79–92 (2012). https://doi.org/10.1007/s00294-012-0366-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-012-0366-6

Keywords

Navigation