Skip to main content

Advertisement

Log in

Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

EaDREB2 overexpressed in sugarcane enhanced tolerance to drought and salinity. When co-transformed with plant DNA helicase gene, DREB2 showed greater level of salinity tolerance than in single-gene transgenics.

Abstract

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and can potentially cause up to 50 % yield loss. DREB proteins play a vital regulatory role in abiotic stress tolerance in plants. We previously reported that expression of EaDREB2 is enhanced by drought stress in Erianthus arundinaceus. In this study, we have isolated the DREB2 gene from E. arundinaceus, transformed one of the most popular sugarcane variety Co 86032 in tropical India with EaDREB2 through Agrobacterium-mediated transformation, pyramided the EaDREB2 gene with the gene coding for PDH45 driven by Port Ubi 2.3 promoter through particle bombardment and evaluated the V1 transgenics for soil deficit moisture and salinity stresses. Soil moisture stress was imposed at the tillering phase by withholding irrigation. Physiological, molecular and morphological parameters were used to assess drought tolerance. Salinity tolerance was assessed through leaf disc senescence and bud sprout assays under salinity stress. Our results indicate that overexpression of EaDREB2 in sugarcane enhances drought and salinity tolerance to a greater extent than the untransformed control plants. This is the first report of the co-transformation of EaDREB2 and PDH45 which shows higher salinity tolerance but lower drought tolerance than EaDREB2 alone. The present study seems to suggest that, for combining drought and salinity tolerance together, co-transformation is a better approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Overexpression of a DEAD box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354

    Article  CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Ananda Kumar P, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Reports 29:383–395

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Syamaladevi DP, Premachandran MN, Ravichandran R, Subramonian N (2014) Physiological and molecular insights to drought responsiveness in Erianthus spp. Sugar Tech. doi:10.1007/s12355-014-0312-7

    Google Scholar 

  • Baker NR, Horton P (1987) Chlorophyll fluorescence quenching during photoinhibition. In: Arntzen CJ, Kyle DJ, Osmond CB (eds) Topics in Photosynthesis, vol 9., photoinhibitionElsevier, Amsterdam, The Netherlands, pp 145–168

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Ben Saad R, Walid B, Nabil Z, Jalel A, Delphine M, Emmanuel G, Radhouane E, Afif H (2012) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breeding 30:521–533

    Article  CAS  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  CAS  PubMed  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  • Bliss RD, Plattaloia KA, Thomson WW (1986) Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ 9:721–725

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stress. Plant Cell 7:1099–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford KJ (1990) A water relation analysis of seed germination rates. Plant Physiol 94:840–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandra Babu R, Zhang JX, Blum A, Ho DTH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of d-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xia X, Yin W (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chomczynski P, Mackey K (1995) Modification of the TRI reagent DNA/protein isolation procedure for isolation of RNA from polysaccharide and proteoglycan rich sources. Biotechniques 19:942–945

    CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Below FE, Harper JE, Hageman RH (1984) Effects of pod removal on metabolism and senescence of nodulating and nonnodulating Soybean isolines: II. Enzymes and chlorophyll. Plant Physiol 75(2):318–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genome approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76:19–34

    Article  CAS  PubMed  Google Scholar 

  • El Hafid R, Smith DH, Karrou M, Samir K (1998) Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars. Can J Plant Sci 78:227–237

    Article  Google Scholar 

  • Engelbrecht BMJ, Melvin TT, Thomas AK (2007) Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J Trop Ecol 23:497–500

    Article  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Da retards abscisic acid and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought tolerance in plants. Am Inst Chem Eng. doi:10.1002/btpr.514

    Google Scholar 

  • Jagtap V, Bhargava S, Sterb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  • Jeanneau M, Vidal J, Gousset-dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P (2002) Manipulating PEPC levels in plants. J Exp Bot 53:1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Khan MS (2011) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol 25(3):2433–2442

    Article  CAS  Google Scholar 

  • Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L. Labiatae) under mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

    Article  CAS  Google Scholar 

  • Latha C, Prasad Manoj (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Macková H, Marie H, Jana D, Veronika T, Ondřej N, Zuzana L, Václav M, Daniel H, Tomáš H, Ilja TP, Alena G, Helena Š, Eva G, Tomáš W, Thomas S, Radomíra V (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64(10):2805–2815

    Article  PubMed Central  PubMed  Google Scholar 

  • Madhusudan KV, Giridarakumar S, Ranganayakulu GS, Reddy PC, Sudhakar C (2002) Effect of water stress on some physiological responses in two groundnut (Arachis hypogea L.) cultivars with contrasting drought tolerance. J Plant Biol 29:199–202

    Google Scholar 

  • Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56(2):111–125

    Article  CAS  PubMed  Google Scholar 

  • Martineau JR, Specht JE, Williams JH, Sullivan CY (1979) Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci 19:75–78

    Article  Google Scholar 

  • Mito T, Seki M, Shinozaki K, Ohme Takagi M, Matsui K (2010) Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnol J 9:736–746

    Article  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  PubMed  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Nagy Z, Tuba Z, Zsoldos F, Erdei L (1995) CO2 exchange and water relation responses of sorghum and maize during water stress. J Plant Physiol 145:539–544

    Article  CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  • Pham XH, Reddy MK, Ehtesham NZ, Matta B, Tuteja N (2000) A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant J 24:219–229

    Article  CAS  PubMed  Google Scholar 

  • Phillip A, Syamaladevi DP, Chakravarthy M, Gopinath K, Subramonian N (2013) 5′ Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Rep 32:1199–1210

    Article  Google Scholar 

  • Pinheiro HA, Da Matta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control f water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Qin H, Qiang G, Junling Z, Sun L, Sundaram K, Yizheng Z, Mark B, Paxton P, Eduardo B, Hong Z (2011) Regulated expression of an Isopentenyl transferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52(11):1904–1914

    Article  CAS  PubMed  Google Scholar 

  • Ray PKS, Islam MA (2008) Genetic analysis of salinity tolerance in rice. Bangla J Agric Res 33:519–529

    Google Scholar 

  • Reis RR, Bárbara ADBC, Polyana KM, Maria TBM, Jean CA, Antônio CJ, Alan CA, Ana PR, Feng Q, Junya M, Yamaguchi-Shinozaki K, Kazuo N, Josirley FCC, Carlos AFS, Alexandre LN, Adilson KK, Hugo BCM (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. doi:10.1016/j.plantsci.2014.02.003

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russel DW (1989) Molecular cloning: a laboratory manual, III edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanan Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photo protection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeon pea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ 33:1324–1338

    CAS  PubMed  Google Scholar 

  • Singh S, Modi MK, Gill SS, Tuteja N (2012) Rice: genetic engineering approaches for abiotic stress tolerance retrospects and prospects. In: Tuteja N, Gill SS, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley-VCH Verlag GmbH and Co, KGaA, Germany, pp 203–225

    Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc the Natl Acad Sci USA 94:1035–1040

    Article  CAS  Google Scholar 

  • Tan W, Meng QW, Brestic M, Olsovska K, Yang XH (2011) Photosynthesis is improved by exogenous calcium in heat stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Ungar IA (1978) Halophyte seed germination. Bot Rev 44:233–264

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • van Rensburg L, Kruger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J Plant Physiol 143:730–737

    Article  Google Scholar 

  • Vaz J, Sharma PK (2011) Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian J Exp Bot 49:60–67

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Zlatev Z (2009) Drought-induced changes in chlorophyll fluorescence of young wheat plant. Biotechnol Biotechnol Equip 23:437–441

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT) (Grant No. 102/IFD/SAN/325/2013-2014), Government of India. The authors are grateful to Dr. J. Srikanth, Principal Scientist, Sugarcane Breeding Institute, Coimbatore, for critical comments for the improvement of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Subramonian.

Additional information

Communicated by Prakash Lakshmanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, S.M., Ashwin Narayan, J., Syamaladevi, D.P. et al. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34, 247–263 (2015). https://doi.org/10.1007/s00299-014-1704-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1704-6

Keywords

Navigation