Skip to main content

Advertisement

Log in

Terrestrial mesofauna in above- and below-ground habitats: Taylor Valley, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the McMurdo Dry Valleys region of Antarctica, above-ground production is often limited to mosses and algae that occur near seasonally available liquid water such as ephemeral streams and ice-covered lakes. Compared to surrounding dry soils these critical transition zones are highly productive and harbor a more diverse assemblage of soil animals, including rotifers, tardigrades, nematodes and microarthropods. Current cooling trends punctuated by warming events, and predicted future climate warming are expected to affect the hydrology of this region and thereby biodiversity and ecosystem functioning. Above-ground communities are exposed to more variable temperature, relative humidity and greater UV radiation, and may be more vulnerable to climate change than sediments beneath, which are buffered from short-term changes. In this study, we compared above- and below-ground communities associated with either moss or cyanobacterial mats along glacial-fed streams and lakes differing in biological complexity (diversity, productivity and habitat suitability). All groups of soil fauna were more abundant in the above-ground material compared to the sediment beneath. Common indicators of habitat suitability (chlorophyll a, soil pH, soil salinity, and soil nitrogen) did not differ between vegetation types but were significantly different among sites. Variables most correlated with invertebrate abundances were sediment salinity, chlorophyll a content and nitrogen concentration. The McMurdo Dry Valleys are expected to become warmer and wetter as a result of climate change. This will likely increase the area of suitable habitat for most soil animals as areas of liquid water potentially increase and become available for longer periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018. doi:10.1016/j.soilbio.2006.04.030

    Article  CAS  Google Scholar 

  • Alger AS, McKnight DM, Spaulding SA, Tate CM, Shupe GH, Welsh KA, Edwards R, Andrews ED, House HR (1997) Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. 51, INSTAAR, University of Colorado

  • Andrassy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. Polar Biol 30:669–678. doi:10.1007/s00300-006-0224-4

    Article  Google Scholar 

  • Ayres E, Wall DH, Adams BJ, Barrett JE, Virginia RA (2007) Unique similarity of faunal communities across aquatic-terrestrial interfaces in a polar desert ecosystem. Ecosystem 52:3–535

    Google Scholar 

  • Bardgett RD, Anderson JM, Behan-Pelletier V, Brussaard L, Coleman DC, Ettema C, Moldenke A, Schimel JP, Wall DH (2001) The influence of soil biodiversity on the hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems. Ecosystem 4:421–429. doi:10.1007/s10021-001-0020-5

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH (2002) Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystem 5:289–299. doi:10.1007/s10021-001-0072-6

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH, Moorhead DL (2007) Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. J Geophys Res 112:G01010. doi:10.1029/2005JG000141

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Adams BJ (2008a) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity ecosystem. Glob Change Biol 14:1734–1744. doi:10.1111/j.1365-2486.2008.01611.x

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008b) Persistent effects of a discrete climate event on a polar desert ecosystem. Glob Change Biol 14:2249–2261. doi:10.1111/j.1365-2486.2008.01641.x

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecol 81:2377–2391

    Article  Google Scholar 

  • Caldwell JR (1981) Biomass and respiration of Nematode populations in 2 Moss Communities at Signy-Island, Maritime Antarctic. Oikos 37:160–166. doi:10.2307/3544460

    Article  Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam

    Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: The McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17. doi:10.1017/S0954102001000037

    Article  Google Scholar 

  • Dartnall HJG (2005) Freshwater invertebrates of subantarctic South Georgia. J Nat Hist 39:3321–3342. doi:10.1080/00222930500190186

    Article  Google Scholar 

  • De Dyne GB, van Ruijven J, Raaijmakers CE, de Ruiter PC, van der Putten WH (2007) Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos 116:923–930. doi:10.1111/j.0030-1299.2007.15761.x

    Article  Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res 107:4772–4784. doi:10.1029/2001JD002045

    Article  Google Scholar 

  • Elberling BE, Gregorich EG, Hopkins DW, Sparrow AD, Novis P, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol Biochem 38:3095–3106. doi:10.1016/j.soilbio.2005.12.011

    Article  CAS  Google Scholar 

  • Esposito RMM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:L07406. doi:10.1029/2006GL025903

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1993) The ecology of nematodes in Antarctic Dry Valley soils. Antarct J US 28:10–11

    Google Scholar 

  • Freckman DW, Virginia RA (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert. The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC, pp 323–336

    Google Scholar 

  • Gooseff MN, Barrett JE, Doran PT, Fountain AG, Lyons WB, Parsons AN, Porazinska DL, Virginia RA, Wall DH (2003) Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. AAAR 35:91–99

    Google Scholar 

  • Gooseff MN, Barrett JE, Northcott ML, Bate DB, Hill KR, Zeglin LH, Bobb M, Takacs-Vesbach CD (2007) Controls n the spatial dimensions of wetted hydrologic margins of two Antarctic lakes. Vad Zone J 6:841–848. doi:10.2136/vzj2006.0161

    Article  Google Scholar 

  • Green TGA, Kulle D, Pannewitz S, Sancho LG, Schroeter B (2005) UV-A protection in mosses growing in continental Antarctica. Polar Biol 28:822–827. doi:10.1007/s00300-005-0011-7

    Article  Google Scholar 

  • Greenfield LG (1992) Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarct Sci 4:205–206. doi:10.1017/S0954102092000312

    Article  Google Scholar 

  • Harris KJ, Carey AE, Lyons WB, Welch KA, Fountain AG (2007) Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. GSA Bull 119:548–555. doi:10.1130/B25913.1

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Novis PM, Gregorich EG, Elberling G, Greenfield LG (2006) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc R Soc Lond B Biol Sci 273:2687–2695. doi:10.1098/rspb.2006.3595

    Article  CAS  Google Scholar 

  • Howard-Williams C, Pridmore R, Downes MT, Vincent WF, Pickmere S (1988) Cyanobacteria and nitrogen cycling in the Ross Ice Shelf Ecosystems (RISE). NZARP Taupo Res Lab Rep 103

  • Ikard SJ, Gooseff MN, Barrett JE, Takacs-Vesbach CD (2009) Active layer thermal characterization across a soil moisture gradient In the McMurdo Dry Valleys. Antarc Perm Perigl Proc 20:27–39. doi:10.1002/ppp.634

    Article  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315. doi:10.2307/1551914

    Article  Google Scholar 

  • Kinchin IM (1989) The Moss Fauna. 2. Nematodes. J Biol Educ 23:37–40

    Google Scholar 

  • Lyons WB, Welch KA, Carey AE, Doran PT, Wall DH, Virginia RA, Fountain AG, Csathó BM, Tremper CM (2005) Groundwater seeps in Taylor Valley Antarctica: An example of a subsurface melt event. Ann Glaciol 40:200–206. doi:10.3189/172756405781813609

    Article  CAS  Google Scholar 

  • McKnight DM, Niyogi DV, Alger AS, Bomblies A, Conovitz PA, Tate M (1999) Dry Valley streams in Antarctica: ecosystems waiting for water. Biosci 49:985–995. doi:10.2307/1313732

    Article  Google Scholar 

  • McKnight DM, Runkel RL, Tate KR, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23:171–188. doi:10.1899/0887-3593(2004)023<0171:INAPDO>2.0.CO;2

    Article  Google Scholar 

  • Mcknight DM, Tate CM, Andrews ED, Niyogi DK, Cozzetto K, Welch K, Lyons WB, Capone DG (2007) Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarcitca: a long-term geomorphological experiment. Geomorphy 89(SI):186–204

    Google Scholar 

  • Newsham KK, Rolf J, Pearce DA, Strachan RJ (2004) Differing preference of Antarctic soil nematodes for microbial prey. Eur J Soil Biol 40:1–8. doi:10.1016/j.ejsobi.2004.01.004

    Article  Google Scholar 

  • Niyogi K, Tate C, McKnight D, Duff J, Alger A (1997) Species composition and primary production of algal communities in dry valley streams in Antarctica: examination of the functional role of biodiversity. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic Ice-Free Landscapes. Balkema, Brookfield, pp 171–179

    Google Scholar 

  • Nkem JN, Virginia RA, Barrett JE, Wall DH, Li G (2006) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651. doi:10.1007/s00300-005-0101-6

    Article  Google Scholar 

  • Northcott ML, Gooseff MN, Barrett JE, Zeglin LH, Takacs-Vesbach CD, Humphrey J (2009) Hydrologic characteristics of lake- and stream-side riparian margins in the McMurdo Dry Valleys, Antarctica. Hydrol Proc (in press)

  • Overgaard-Nielsen C (1948) Studies on the soil microfauna. I. The moss-inhabiting nematodes and rotifers. Naturv Skr Laerde Selsk Skr 1:1–98

    Google Scholar 

  • Pannewitz S, Green TGA, Scheidegger C, Schlensog M, Schroeter B (2003) Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during the mid-austral summer. Polar Biol 26:545–551. doi:10.1007/s00300-003-0518-8

    Article  Google Scholar 

  • Poage MA, Barrett JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. AAAR 40:119–128

    Google Scholar 

  • Powers LE, Freckman DW, Virginia RA (1995) Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biol 15:325–333

    Article  Google Scholar 

  • Schwarz AMJ, Green JD, Green TGA, Seppelt RD (1993) Invertebrates associated with moss communities at Canada Glacier, Southern Victoria-Land, Antarctica. Polar Biol 13:157–162. doi:10.1007/BF00238925

    Article  Google Scholar 

  • Seppelt RD, Green TGA (1998) A bryophyte flora for Southern Victoria Land, Antarctica. NZ J Bot 36:617–635

    Google Scholar 

  • Sinclair BJ, Sjursen H (2001) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiology 45:134–145. doi:10.1078/0031-4056-00075

    Article  Google Scholar 

  • Sohlenius B, Bostrom S (2006) Patch-dynamics and population structure of nematodes and tardigrades on Antarctic nunataks. Eur J Soil Biol 42:S321–S325. doi:10.1016/j.ejsobi.2006.07.008

    Article  Google Scholar 

  • Suren A (1990) Microfauna associated with algal mats in melt ponds of the Ross Ice Shelf. Polar Biol 10:329–335. doi:10.1007/BF00237819

    Article  Google Scholar 

  • Suren A (1991) Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshw Biol 26:399–418. doi:10.1111/j.1365-2427.1991.tb01407.x

    Article  Google Scholar 

  • Treonis AM, Wall DH, Virginia RA (2005) Invertebrate diversity in Taylor Valley soils and sediments. Antarct J US 33:13–16

    Google Scholar 

  • Wall DH (2007) Global change tipping points: above- and belowground biotic interactions in a low diversity ecosystem. Philos Proc R Soc Lond Sect B Biol Sci 362:2291–2306. doi:10.1098/rstb.2006.1950

    Article  Google Scholar 

  • Wall DH, Viginia RA (1999) Controls on soil biodiversity: insights from an extreme environment. Appl Soil Ecol 13:137–150. doi:10.1016/S0929-1393(99)00029-3

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW (1970) Two terrestrial nematodes from the McMurdo Sound region Antarctica, with a note on Anaplectus arenicola Killick. J Helminthol XLVI 2:7–34

    Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi:10.1111/j.1574-6941.2006.00200.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Abigail Adams for field and lab assistance. Soil and vegetation analysis were run by Galina Ackerman and Kathy Welch in the Crary Analytical Lab at McMurdo Station. Figure 1 provided by D. M. McKnight. Vegetation and soils are permanently stored at the Colorado State University Antarctic Soil Archive. Preserved animals are part of the Colorado State University, Natural History Museum’s Soil Micro-invertebrate Collection. This study was supported by National Science Foundation grants OPP 9810219 and OPP 0096250 as part of the McMurdo Dry Valley LTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breana L. Simmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, B.L., Wall, D.H., Adams, B.J. et al. Terrestrial mesofauna in above- and below-ground habitats: Taylor Valley, Antarctica. Polar Biol 32, 1549–1558 (2009). https://doi.org/10.1007/s00300-009-0639-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0639-9

Keywords

Navigation