Skip to main content

Advertisement

Log in

Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

From 18 soil samples taken in the vicinity of the permanent Bulgarian Antarctic base “St. Kliment Ohridski” (62°38′29″S, 60°21′53″W) on Livingston Island, 109 filamentous fungi were isolated on selective media. The most widespread fungal species were members of the genera Cladosporium, Geomyces, Penicillium and Aspergillus. Other species, already recorded in Antarctic environment, were also isolated: Lecanicillium muscarium, Epicoccum nigrum and Alternaria alternata. Thirty strains demonstrating good growth were screened for antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) that play an important role in the defense of aerobic organisms against oxidative stress, by converting reactive oxygen species into nontoxic molecules. Six of them showed high enzyme activity. The tested strains produced SOD with statistically significant higher activity at 15°C than at 30°C suggesting that this enzyme is cold-active. Such SOD could be useful in medicine and cosmetics. The best producer of cold-active SOD, Aspergillus glaucus 363, cultivated in bioreactors, demonstrated optimal growth temperature at 25°C and maximum enzyme activities at 25 and 30°C for SOD and CAT, respectively. The electrophoretical analysis showed that the fungus possesses Cu/Zn-SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol Part A 138:405–415

    Article  CAS  Google Scholar 

  • Alaçam A, Tulunoglu O, Oygür T, Bilici S (2000) Effects of topical catalase application on dental pulp tissue: a histopathological evaluation. J Dentistry 28:333–339

    Article  Google Scholar 

  • Angelova M, Genova L, Pashova S, Slokoska L, Dolashka P (1996) Effect of cultural conditions on the synthesis of superoxide dismutase by Humicola lutea 110. J Ferm Bioeng 82:464–468

    Article  CAS  Google Scholar 

  • Angelova M, Dolashka-Angelova P, Ivanova E, Serkedjieva J, Slokoska L, Pashova S, Toshkova R, Vassilev S, Simeonov I, Hartmann H-J, Stoeva S, Weser U, Voelter W (2001) A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potential therapeutic effect. Microbiology (UK) 147:1641–1650

    CAS  Google Scholar 

  • Angelova M, Pashova S, Spasova B, Vassilev S, Slokoska S (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109:150–158

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Harvey LM, Mcneil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogene peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 40:221–248

    Article  CAS  PubMed  Google Scholar 

  • Bouftira I, Abdelly C, Sfar S (2008) Characterization of cosmetic cream with Mesembryanthemum crystallinum plant extract: influence of formulation composition on physical stability and anti-oxidant activity. Int J Cosmet Sci 30:443–452

    Article  CAS  PubMed  Google Scholar 

  • Cameron RE, Benoit RE (1970) Microbial and ecological investigations of recent cinder cones, Deception Island, Antarctica—a preliminary report. Ecology 51:802–809

    Article  Google Scholar 

  • Chattopadhyay MK (2002) Low temperature and oxidative stress. Curr Sci 83:109

    Google Scholar 

  • Christofidou-Solomidou M, Scherpereel A, Wiewrodt R, Ng K, Sweitzer T, Arguiri E, Shuvaev V, Solomides CC, Albelda SM, Muzykantov VR (2003) PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress. Am J Physiol Lung Cell Mol Physiol 285:L283–L292

    CAS  PubMed  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2007) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Gerday C, Marx JC (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Google Scholar 

  • Cooke WB (1954) The use of antibiotics in media for the isolation of fungi from polluted water. Antibiot Chemother 4:657–662

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi, vol 1. Academic Press, London, p 859

    Google Scholar 

  • El-Sisy GA, El-Nattat WS, El-Sheshtawy RI (2008) Effect of superoxide dismutase and catalase on viability of cryopreserved buffalo spermatozoa. Glob Veterinaria 2:56–61

    Google Scholar 

  • Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, Amsterdam, p 233

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophylic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genico S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity a radical explanation. J Exp Biol 201:1203–1209

    CAS  PubMed  Google Scholar 

  • Gams W (1971) Cephalosporium-artige schimmelpilze (Hyphomycetes). Gustav Fisher Verlag, Stuttgart, p 262

    Google Scholar 

  • Gocheva Y, Krumova E, Slokoska L, Miteva J, Angelova M (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Gray NF, Lewis-Smith RI (1984) The distribution of nematophagous fungi in the maritime Antarctic. Mycopathologia 85:81–92

    Article  Google Scholar 

  • Greenwald RA (1990) Superoxide dismutase and catalase as therapeutic agents for human diseases. A critical review. Free Radic Biol Med 8:201–209

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Wang Y (2009) Poly SOD-catalase as a therapeutic agent with antioxidant properties. Pharm Biol 47:620–623

    Article  CAS  Google Scholar 

  • Guminska B, Heinrich Z, Olech M (1994) Macromycetes of the South Shetland Islands (Antarctica). Pol Polar Res 15:103–109

    Google Scholar 

  • Kawamata H, Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Gen 17:3303–3317

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, The Netherlands, p 116

    Google Scholar 

  • Koleva DL, Petrova VY, Kujumdzieva AV (2008) Comparison of enzymatic antioxidant defence systems in different metabolic types of yeasts. Can J Microbiol 54:957–963

    Article  CAS  PubMed  Google Scholar 

  • Krumova E, Dolashki A, Pashova S, Dolashka-Angelova P, Stevanovic S, Hristova R, Stefanova L, Voelter W, Angelova M (2008) Unusual location and characterization of Cu/Zn-containing superoxide dismutase from filamentous fungus Humicola lutea. Arch Microbiol 189:121–130

    Article  CAS  PubMed  Google Scholar 

  • Kujumdzieva A, Nedeva T, Morfova M, Savov V (1997–1998) Isolation and characterisation of two thermotolerant Kluyveromyces yeast strains. J Cult Collect (Sofia) 2: 44–50

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liang P, Yin C, Wang T, Li H, Li Y, Ye Z (2004) Effects of several Chinese herbal aqueous extracts on human sperm motility in vitro. Andrologia 36:78–83

    Article  CAS  PubMed  Google Scholar 

  • Lods LM, Dres C, Johson C, Scholz DB, Brooks GJ (2000) The future of enzymes in cosmetics. Int J Cosmet Sci 22:85–94

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough HJ, Faar AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luo H, Yamamoto Y, Kim JA, Jung JS, Koh YJ, Hur J-S (2009) Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol 32:1033–1040

    Article  Google Scholar 

  • Merlino A, Krauss IR, Castellano I, De Vendittis E, Vergara A, Sica F (2008) Crystallization and preliminary X-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis. Prot Peptide Lett 15:415–418

    Article  CAS  Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Article  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  Google Scholar 

  • Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamia E (1997) Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444

    Article  CAS  Google Scholar 

  • Olech M, Alstrup V (1990) Teleocarpon cyaneum sp. nov. Nordic J Bot 9:575–576

    Article  Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2007) Continental Antarctic Fungi. IHW Verlag: Eching bei Munchen, D, pp 247

  • Paramonov BA, Turkovski II, Doroshkevich OS, Taranova VN, Pomorski KP (2008) Effect of local application of superoxide dismutase on dielectric parameters of cooled skin in rats. Bull Exp Biol Med 146:588–590

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Jin ES, Lee MY (2008) Expression and antioxidant enzymes in Chaetoceros neogracile, an Antarctic alga. Cryo Lett 29:351–361

    CAS  Google Scholar 

  • Pavlova K, Grigorova D, Hristozova T, Angelov A (2001) Yeast strains from Livingston Island, Antarctica. Folia Microbiol 46:397–401

    Article  CAS  Google Scholar 

  • Pavlova K, Metcheva R, Savova I, Bezrukov V, Yankov Y, Woodworth L (2006) Study of yeast isolated from Penguin plumage from Western Antarctica. Bulgarian Antarct Res 5:51–62

    Google Scholar 

  • Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptoccocus laurentii AL27. Folia Microbiol 53:29–34

    Article  CAS  Google Scholar 

  • Pegler DN, Spooner BM, Lewis Smith R (1980) Higher fungi of Antarctica, the subantarctic zone and Falkland Islands. Kew Bull 35:499–562

    Article  Google Scholar 

  • Perelman A, Dubinsky Z, Martínez R (2006) Temperature dependence of superoxide dismutase activity in plankton. J Exp Mar Biol Ecol 334:229–235

    Article  CAS  Google Scholar 

  • Petruccioli M, Fenice M, Piccioni P, Federici F (1995) Effect of stirred speed and buffering agents on the production of glucose oxidase and catalase by Penicillium variable (P16) in benchtop bioreactor. Enzyme Microb Technol 17:336–339

    Article  CAS  Google Scholar 

  • Pisareva E, Kujumdzieva A (2005) Thermostability of superoxide dismutases from Monascus purpureus var. Albinus. Biotechnol Biotechnol Equip 19:98–102

    CAS  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic state Eupenicillium and Talaromyces. Academic Press, London, p 634

    Google Scholar 

  • Regoli F, Nigro M, Chiantore M, Winston GW (2002) Seasonal variations of susceptibility to oxidative stress in Adamussium colbecki, a key bioindicator species for the Antarctic marine environment. Sci Total Environ 289:205–211

    Article  CAS  PubMed  Google Scholar 

  • Riemann F, Shrage M (1983) On a mass occurence of a thraustochytrioid protist (fungi or rhizopodan protozoa) in an Antarctic anaerobic marine sediment. Veroffentlichungen des Institus für Meeresforschung in Bremerhaven 19:191–202

    Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Russell N (2006) Antarctic microorganisms: coming in from the cold. Culture (Oxoid) 27:1–4

    Google Scholar 

  • Salmon TB, Evert BA, Song B, Doetsch PW (2004) Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 32:3712–3723

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food- and airborne fungi, 7th edn. Centraalbureau voor Schimmelcultures, The Netherlands, p 389

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed  Google Scholar 

  • Sharpe MA, Ollosson R, Stewart VC, Clark JB (2002) Oxidation of nitric oxide by oxomanganese-salen complex: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem J 366(Pt1):97–107

    CAS  PubMed  Google Scholar 

  • Shilova NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilising hydrogen peroxide in the course of Candida maltosa growth on paraffin. Microbiologiya 58:430–435 (In Russian)

    CAS  Google Scholar 

  • Singer R (1957) A fungus collected in the Antarctic. Sydowia Annales Mycologica Ser 2(1):16–23

    Google Scholar 

  • Siwale RC, Oettinger CW, Balakrishna Pai S, Addo R, Uddin N, Siddig A, D’Souza MJ (2009) Formulation and characterization of catalase in albumin microspheres. J Microencaps Micro Nano Carriers 26:411–419

    Google Scholar 

  • Stchigel AM, Cano J, Mac Cormack W, Guarro J (2001) Antarctomyces psychrotriphicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382

    Article  CAS  Google Scholar 

  • Sun HW, Shen F, Zhou YM (2006) Influence of perfusion by gaseous oxygen persufflation on rat donor liver. Hepatobiliary Pancreat Dis Int 5:195–202

    PubMed  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Van Oorschot CAN (1980) A revision of Chrysosporium and allied Genera. Stud Mycol 20:89

    Google Scholar 

  • Yao XH, Min H, Lv ZM (2006) Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomed Environ Sci 19:309–314

    CAS  PubMed  Google Scholar 

  • Yun YS, Lee YN (2003) Production of superoxide dismutase by Deinococcus radiophilus. J Biochem Mol Biol 36:282–287

    PubMed  Google Scholar 

  • Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112:811–824

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Jiang YH, Miao JL, Wang QF, Zhang BT, Li GY (2006) Purification and characterization of a cold-active iron superoxide dismutase from a psychrophilic bacterium, Marinomonas sp. NJ522. Biotechnol Lett 28:85–88

    Article  CAS  PubMed  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Fund of the Ministry of Education and Science, Bulgaria (grants VU-B-205/06, DO02-172/08 and BG051PO001-3.3.04/32), which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angelova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosi, S., Kostadinova, N., Krumova, E. et al. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biol 33, 1227–1237 (2010). https://doi.org/10.1007/s00300-010-0812-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0812-1

Keywords

Navigation