Skip to main content
Log in

Impacts of eriophyoid gall mites on arctic willow in a rapidly changing Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Arctic plants and herbivores are subject to ongoing climatic changes that are more rapid and extreme than elsewhere on the planet, and thus it is pivotal to understand the arctic plant-herbivore interactions in a global change context. We examined how infestation by an eriophyoid gall mite affects the circumpolar shrub Salix arctica, and how the effects vary across vegetation types. Specifically, we compared multiple leaf characteristics (leaf area, biomass, nutrient levels, δ15N and δ13C, and stress and performance of the photosynthetic apparatus) of infested leaves to those of un-infested leaves. Furthermore, we examined how altered environmental conditions, here experimentally manipulated levels of temperature, water and nutrients, shading, and UV-B radiation, affect the prevalence, density, and intensity of gall mite infestation and its impacts on S. arctica. Infested leaves were smaller in area and biomass and had lower nitrogen and carbon pools. However, their carbon concentration was higher, possibly because the galls acted as carbon sinks. The smaller photosynthetic area and lower nutrient content caused increased stress on the photosynthetic apparatus in infested leaves. The remaining leaf tissue responded with a higher photosynthetic performance, although there were indications of a general reduction in photosynthesis. Female leaves were more affected than male leaves. The experimental manipulations of environmental conditions did not affect the gall prevalence, density, or intensity on S. arctica leaves. Rather, plants responded positively to the treatments, reducing the effects of the galls to in-significance. This suggests a higher tolerance and defense against gall mites under future climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamsen WG, McCrea KD (1986) Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68:174–180

    Article  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Bredahl L, Haakansson KB (2004) Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum. Phyton 45:41–49

    Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H, Arndal MF, Michelsen A (2011) Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. Environ Exp Bot 73:10–18

    Article  CAS  Google Scholar 

  • Amrine JW, Stasny TA (1994) Catalog of the eriophyoidea (Acarina: Prostigmata) of the world. Indira Publish. House, West Bloomfield

    Google Scholar 

  • Argus GW, McJannet CL, Dallwitz MJ (1999) Salicaceae of the Canadian Arctic Archipelago: descriptions, illustrations, identification, and information retrieval. Version 2: 2nd November 2000. www.mun.ca/biology/delta/arcticf/. Accessed March 2012

  • Bay C (1998) Vegetation mapping of Zackenberg Valley, Northeast Greenland. Danish Polar Center & Botanical museum, University of Copenhagen, Denmark

    Google Scholar 

  • Berg TB, Schmidt NM, Høye TT, Aastrup P, Hendrichsen DK, Forchhammer MC, Klein DR (2008) High-Arctic plant-herbivore interactions under climate influence. Adv Ecol Res 40:275–298

    Article  Google Scholar 

  • Böcher J (2001) Insekter og andre smådyr-i Grønlands fjeld og ferskvand. Atuagkat, Vojens

    Google Scholar 

  • Boecklen WJ, Price PW, Mopper S (1990) Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix Lasiolepis). Ecology 71:581–588

    Article  CAS  Google Scholar 

  • Bryant JP, Reichardt PB (1992) Controls over secondary metabolite production by Arctic woody plants. In: Chapin FS, Jefferies RL, Reynold JF, Shaver G, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, London, pp 377–390

    Chapter  Google Scholar 

  • Callaghan TV, Carlsson BA, Tyler NJC (1989) Historical records of climate-related growth in Cassiope tetragona from the Arctic. J Ecol 77:823–837

    Article  Google Scholar 

  • Callaghan TV, Jonasson S, Nichols H, Heywood RB, Wookey PA (1995) Arctic terrestrial ecosystems and environmental change [and discussion]. Phil Trans R Soc Lond A 352:259–276

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002a) Carbon input to terrestrial ecosystems. In: Principles of terrestrial ecosystem ecology. Springer, New York, pp 97–122

  • Chapin FS, Matson PA, Mooney HA (2002b) Terrestrial plant nutrient use. In: Principles of terrestrial ecosystem ecology. Springer, New York, pp 176–196

  • Christiansen CT, Svendsen SH, Schmidt NM, Michelsen A (2012) High arctic heath soil respiration and biogeochemical dynamics during summer and autumn freeze-in—effects of long term enhanced water and nutrient supply. Glob Change Biol 18:3224–3236

    Article  Google Scholar 

  • Collet DM (2004) Willows of interior Alaska. US Fish and Wildlife Service, USA

    Google Scholar 

  • Conn EE (1984) Compartmentation of secondary compounds. Ann Proc Phytochem Soc Eur 24:1–28

    Google Scholar 

  • Cooper EJ, Wookey PA (2003) Floral herbivory of Dryas octopetala by Svalbard reindeer. Arct Antarct Alp Res 35:369–376

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2005) Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 111:488–500

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Egan SP, Ott JR (2007) Host plant quality and local adaptation determine the distribution of a gall-forming herbivore. Ecology 88:2868–2879

    Article  PubMed  Google Scholar 

  • Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L (2008) Soil and plant community-characteristics and dynamics at Zackenberg. Adv Ecol Res 40:223–248

    Article  Google Scholar 

  • Ellebjerg SM, Tamstorf MP, Illeris L, Michelsen A, Hansen BU (2008) Inter-annual variability and controls of plant phenology and productivity at Zackenberg. Adv Ecol Res 40:249–273

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics, 2.2nd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Graglia E, Jonasson S, Michelsen A, Schmidt IK (1997) Effects of shading, nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two arctic-alpine plant communities. Ecoscience 4:191–198

    Google Scholar 

  • Gripenberg S, Roslin T (2005) Host plants as islands: resource quality and spatial setting as determinants of insect distribution. Ann Zool Fennici 42:335–345

    Google Scholar 

  • Hakkarainen H, Roininen H, Virtanen R (2005) Negative impact of leaf gallers on arctic-alpine dwarf willow, Salix herbacea. Polar Biol 28:647–651

    Article  Google Scholar 

  • Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B (2008a) Present-day climate at Zackenberg. Adv Ecol Res 40:111–149

    Article  Google Scholar 

  • Hansen J, Hansen LH, Tamstorf MP, Christoffersen K, Jeppesen E, Schmidt NM (2008b) Zackenberg basic: the BioBasic programme. Zackenberg ecological research operations, 13th annual report, 2007. Copenhagen, Danish Polar Center, Danish Agency for Science, Technology and Innovation, Ministry of Science, Technology and Innovation, 2008

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  Google Scholar 

  • Haukioja E (1981) Invertebrate herbivory at tundra sites. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems. Cambridge University Press, Cambridge, pp 547–556

    Google Scholar 

  • Hodkinson ID, Webb NR, Bale JS, Block W, Coulson JC, Strathdee AT (1998) Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct Alp Res 30:306–313

    Article  Google Scholar 

  • Illeris L, Michelsen A, Jonasson S (2003) Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65:15–59

    Article  CAS  Google Scholar 

  • Jefferies RL, Klein CJ, Shaver G (1994) Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos 71:193–206

    Article  Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264. doi:10.1111/j.1365-2656.2007.01339.x

    Article  PubMed  Google Scholar 

  • Klein DR, Bay C (1991) Diet selection by vertebrate herbivores in the high arctic of Greenland. Holarctic Ecol 14:152–155

    Google Scholar 

  • Kristensen DK, Kristensen E, Forchhammer MC, Michelsen A, Schmidt NM (2011) Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Can J Zool 89:893–900

    Article  Google Scholar 

  • Kuczynski L, Skoracka A (2005) Spatial distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on arctic willows. Exp Appl Acarol 36:277–289. doi:10.1007/s10493-005-7551-y

    Article  PubMed  Google Scholar 

  • Kukal O, Dawson TE (1989) Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79:526–532

    Article  Google Scholar 

  • Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115:161–166

    Article  Google Scholar 

  • Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88:15–21

    Article  Google Scholar 

  • Larsson SA, Wiren A, Lundgren L, Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola. Oikos 47:205–210

    Article  CAS  Google Scholar 

  • Leite GLD, Picanco M, Zanuncio JC, Marquini F (2003) Factors affecting mite herbivory on eggplants in Brazil. Exp Appl Acarol 31:243–252

    Article  PubMed  Google Scholar 

  • Lindquist EE, Sabelis MW, Bruin J (eds) (1996) World crop pests 6: eriophyoid mites. Their biology, natural enemies and control, vol 6. Elsevier Science, Amsterdam

  • MacLean SFJ (1981) Fauna of tundra ecosystems: invertebrates. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems. Cambridge University Press, Cambridge, pp 509–516

    Google Scholar 

  • Marshall VG, Clayton MR (2004) Biology and phenology of Cecidophyopsis psilaspis (Acari: Eriophyidae) on Pacific yew (Taxaceae). Can Entomol 136:695–710

    Article  Google Scholar 

  • Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell publishing, Oxford

    Google Scholar 

  • Massad TJ, Dyer LA (2010) A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod Plant Interact 4:181–188

    Article  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Mazza CA, Zavala J, Scopel AL, Ballare CL (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. P Natl Acad Sci USA 96:980–985

    Article  CAS  Google Scholar 

  • McCrea KD, Abrahamsen WG, Weis AE (1985) Goldenrod ball gall effects on Solidago altissima. Ecology 66:1902–1907

    Article  Google Scholar 

  • Meyer GA (2000) Effects of insect feeding on growth and fitness of goldenrod (Solidago altissima). Recent Res Devel Entomol 3:29–41

    Google Scholar 

  • Michalska K, Skoracka A, Navia D, Amrine JW (2010) Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51:31–59

    Article  PubMed  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard C, Venn S, Goetz S, Andreau-Hayles L, Elmendorf SC, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta analysis. Oikos 104:247–268

    Article  Google Scholar 

  • Olofsson J, Hulme PE, Oksanen L, Suominen O (2004) Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos 106:324–334

    Article  Google Scholar 

  • Ozman SK, Goolsby JA (2005) Biology and phenology of the eriophyid mite, Floracarus perrepae, on its native host in Australia, Old World climbing fern, Lygodium microphyllum. Exp Appl Acarol 35:197–213

    Article  PubMed  Google Scholar 

  • Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994) Growth responses of four sub-arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318

    Article  Google Scholar 

  • Patankar R, Thomas SC, Smith SM (2011) A gall-inducing arthropod drives declines in canopy tree photosynthesis. Oecologia 167:701–709

    Article  PubMed  Google Scholar 

  • Patankar R, Starr G, Mortazavi B, Oberbauer SF, Rosenblum A (2013) The effects of mite galling on the ecophysiology of two arctic willows. Arct Antarct Alp Res 45:1–8. doi:10.1657/1938-4246-1645.1651

    Article  Google Scholar 

  • Petanovic R, Kielkiewicz M (2010) Plant-eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. Exp Appl Acarol 51:61–80. doi:10.1007/s10493-010-9351-2

    Article  CAS  Google Scholar 

  • Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. PNAS 105:12353–12358

    Article  PubMed  CAS  Google Scholar 

  • Quiros-Gonzalez M (2000) Phytophagous mite populations on Tahiti lime, Citrus latifolia, under induced drought conditions. Exp Appl Acarol 24:897–904

    Article  PubMed  CAS  Google Scholar 

  • Raven P (1983) Phytophages of xylem and phloem. Rec Adv Ecol 14:136–234

    Google Scholar 

  • Richardson SJ, Press MC, Parsons AN, Hartley SE (2002) How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. J Ecol 90:544–556

    Article  Google Scholar 

  • Rosenqvist E, Van Kooten O (2003) Chlorophyll fluorescence: a general description and nomenclature. In: Dell JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer academic Publishers, Dordrecht

    Google Scholar 

  • Rousseaux MC, Julkunen-Tiitto R, Searles PS, Scopel AL, Aphalo PJ, Ballare CL (2004) Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica. Oecologia 138:505–512. doi:10.1007/s00442-003-1471-5

    Article  PubMed  Google Scholar 

  • Schmidt NM, Baittinger C, Forchhammer MC (2006) Reconstructing century-long snow regimes using estimates of high Arctic Salix arctica radial growth. Arct Antarct Alp Res 38:257–262

    Article  Google Scholar 

  • Schmidt NM, Hansen LH, Hansen J, Berg TB, Meltofte H (2012) BioBasis manual: conceptual design and sampling procedures of the biological monitoring programme within Zackenberg basic, 15th edn. Aarhus University, Department of Bioscience, Roskilde

    Google Scholar 

  • Schultz BB (1992) Insect herbivores as potential causes of mortality and adaptation in gallforming insects. Oecologia 90:297–299

    Google Scholar 

  • Skoracka A, Kuczynski L (2003) Population dynamics of eriophyoid mites (Acari: Eriophyoidea) living on grasses in Poland. Biol Lett 40:101–110

    Google Scholar 

  • Stinner BR, Abrahamsen WG (1979) Energetics of the Solidago Canadensis-stem gall insect-parasitoid guild interactions. Ecology 60:918–926

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood SR (1984) Insects on plants. Community patterns and mechanisms. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Szydlo W, Skaftason JF, Skoracka A (2010) Eriophyoid mites (Prostigmata: Eriophyoidea: Eriophyidae) from Icleand: one new species, and three new mite records. Ann Zool 60:139–157. doi:10.3161/000345410x499623

    Article  Google Scholar 

  • Taper ML, Case TJ (1987) Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71:254–261

    Article  Google Scholar 

  • Taper ML, Zimmermann EM, Case TJ (1986) Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): the importance of the tannin/fungus interaction. Oecologia 68:437–495

    Article  Google Scholar 

  • Trumble JT, Kolodny-Hirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • US Forest Service (2012) Salix Arctica Pallas. www.fs.fed.us/global/iitf/pdf/shrubs/Salix%20arctica.pdf. Accessed March 2012

  • Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010) The control of eriophyoid mites: state of the art and future challenges. Exp Appl Acarol 51:205–224. doi:10.1007/s10493-009-9312-9

    Article  PubMed  Google Scholar 

  • Varadarajan MK, David PMM (2002) Population dynamics of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and associated arthropods in Tamil Nadu, India. Insect Sci Its Appl 22:47–59

    Google Scholar 

  • Vuorisalo T, Walls M, Kuitunen H (1990) Gall mite (Eriophyes laevis) infestation and leaf removal affect growth of leaf area in black alder (Alnus glutinosa) short shoots. Oecologia 84:122–125

    Article  Google Scholar 

  • Wilf P, Labandeira CC (1999) Response of plant-insect associations to paleocene-eocene warming. Science 284:2153–2156

    Article  PubMed  CAS  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, BrÅThen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15:1153–1172. doi:10.1111/j.1365-2486.2008.01801.x

    Article  Google Scholar 

  • Yano Y, Shaver GR, Giblin AE, Rastetter EB (2010) Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction. Biogeochemistry 97:183–194

    Article  CAS  Google Scholar 

  • Zavala JA, Scopel AL, Ballare CL (2001) Effects of ambient UV-B radiation on soybean crops: impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol 156:121–130

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are due to the Zackenberg Research Station for the logistic support. We also thank the Danish National Research Foundation for supporting the activities within the Center for Permafrost (CENPERM DNRF100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Bruun Mosbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosbacher, J.B., Schmidt, N.M. & Michelsen, A. Impacts of eriophyoid gall mites on arctic willow in a rapidly changing Arctic. Polar Biol 36, 1735–1748 (2013). https://doi.org/10.1007/s00300-013-1393-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1393-6

Keywords

Navigation