Skip to main content

Advertisement

Log in

Correlation of contrast agent kinetics between iodinated contrast-enhanced spectral tomosynthesis and gadolinium-enhanced MRI of breast lesions

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Assessment of contrast agent kinetics in contrast-enhanced MRI (CE-MRI) with gadolinium-containing contrast agents offers the opportunity to predict breast lesion malignancy. The goal of our study was to determine if similar patterns exist for spectral contrast-enhanced digital breast tomosynthesis (CE-DBT) using an iodinated contrast agent.

Methods

The protocol of our prospective study was approved by the relevant institutional review board and the German Federal Office for Radiation Protection. All patients provided written informed consent. We included 21 women with a mean age of 62.4 years. All underwent ultrasound-guided biopsy of a suspect breast lesion, spectral CE-DBT and CE-MRI. For every breast lesion, contrast agent kinetics was assessed by signal intensity–time curves for spectral CE-DBT and CE-MRI. Statistical comparison used Cohen’s kappa and Spearman’s rho test.

Results

Spearman’s rho of 0.49 showed significant (P = 0.036) correlation regarding the contrast agent kinetics in signal intensity–time curves for spectral CE-DBT and CE-MRI. Cohen’s kappa indicated moderate agreement (kappa = 0.438).

Conclusion

There is a statistically significant correlation between contrast agent kinetics in the signal intensity–time curves for spectral CE-DBT and CE-MRI. Observing intralesional contrast agent kinetics in spectral CE-DBT may aid evaluation of malignant breast lesions.

Key Points

Contrast agent kinetics can be assessed using spectral digital breast tomosynthesis (DBT).

Contrast agent kinetics patterns in spectral DBT are similar to those in contrast-enhanced MRI.

Multiple contrast enhancement for spectral DBT gives additional diagnostic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CE-DBT:

contrast-enhanced DBT

CE-MRI:

contrast-enhanced breast magnetic resonance imaging

DBT:

digital breast tomosynthesis

DM:

digital mammography

ROI:

region of interest

LE:

low energy

LT:

total energy

References

  1. Carney PA, Miglioretti DL, Yankaskas BC et al (2003) Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 138:168–175

    Article  PubMed  Google Scholar 

  2. Förnvik D, Zackrisson S, Ljungberg O et al (2010) Breast tomosynthesis: accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiol 51:240–247

    Article  PubMed  Google Scholar 

  3. Andersson I, Ikeda DM, Zackrisson S et al (2008) Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825

    Article  PubMed  Google Scholar 

  4. Hellerhoff K (2010) Digital breast tomosynthesis: technical principles, current clinical relevance and future perspectives. Radiologe 50:991–998

    Article  PubMed  CAS  Google Scholar 

  5. Tingberg A (2010) X-ray tomosynthesis: a review of its use for breast and chest imaging. Radiat Prot Dosim 139:100–107

    Article  Google Scholar 

  6. Lewin JM, Niklason L (2007) Advanced applications of digital mammography: tomosynthesis and contrast-enhanced digital mammography. Semin Roentgenol 42:243–252

    Article  PubMed  Google Scholar 

  7. Lee SH, Kim JH, Cho N et al (2010) Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Med Phys 37:3940–3956

    Article  PubMed  Google Scholar 

  8. Yamamoto A, Fukushima H, Okamura R et al (2006) Dynamic helical CT mammography of breast cancer. Radiat Med 24:35–40

    Article  PubMed  Google Scholar 

  9. Prionas ND, Lindfors KK, Ray S et al (2010) Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 256:714–723

    Article  PubMed  Google Scholar 

  10. Diekmann F, Diekmann S, Jeunehomme F, Muller S, Hamm B, Bick U (2005) Digital mammography using iodine-based contrast media: initial clinical experience with dynamic contrast medium enhancement. Investig Radiol 40:397–404

    Article  Google Scholar 

  11. Dromain C, Balleyguier C, Adler G, Garbay JR, Delaloge S (2009) Contrast-enhanced digital mammography. Eur J Radiol 69:34–42

    Article  PubMed  Google Scholar 

  12. Dromain C, Balleyguier C, Muller S et al (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography. Am J Roentgenol 187:528–537

    Article  Google Scholar 

  13. Jong RA, Yaffe MJ, Skarpathiotakis M et al (2003) Contrast-enhanced digital mammography: initial clinical experience. Radiology 228:842–850

    Article  PubMed  Google Scholar 

  14. Schmitzberger FF, Fallenberg EM, Lawaczeck R et al (2011) Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging. Radiology 259:558–564

    Article  PubMed  Google Scholar 

  15. Baltzer PA, Benndorf M, Gajda M, Kaiser WA (2010) An exception to tumour neoangiogenesis in a malignant breast-lesion. Breast J 16:197–198

    Article  PubMed  Google Scholar 

  16. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  17. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239:666–676

    Article  PubMed  Google Scholar 

  18. Nunes LW, Englander SA, Charafeddine R, Schnall MD (2002) Optimal post-contrast timing of breast MR image acquisition for architectural feature analysis. J Magn Reson Imaging 16:42–50

    Article  PubMed  Google Scholar 

  19. Hylton NM (2001) Vascularity assessment of breast lesions with gadolinium-enhanced MR imaging. Magn Reson Imaging Clin N Am 9:321–332

    PubMed  CAS  Google Scholar 

  20. Carton AK, Gavenonis SC, Currivan JA, Conant EF, Schnall MD, Maidment AD (2010) Dual-energy contrast-enhanced digital breast tomosynthesis–a feasibility study. Br J Radiol 83:344–350

    Article  PubMed  Google Scholar 

  21. Fredenberg E et al (2010) Energy resolution of a photon- counting silicon strip detector. Nucl Instrum Methods Phys Res A 613:156–162

    Article  CAS  Google Scholar 

  22. Lawaczeck R, Jost G, Pietsch H (2011) Pharmacokinetics of contrast media in humans: model with circulation, distribution, and renal excretion. Investig Radiol 46:576–585

    Article  CAS  Google Scholar 

  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 1:159–174

    Article  Google Scholar 

  24. Gur D, Abrams GS, Chough DM et al (2009) Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol 193:586–591

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This pilot study is part and supported by the HighReX project, funded by the European Union. We acknowledge the members of the HighReX project for their contributions and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Schmitzberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froeling, V., Diekmann, F., Renz, D.M. et al. Correlation of contrast agent kinetics between iodinated contrast-enhanced spectral tomosynthesis and gadolinium-enhanced MRI of breast lesions. Eur Radiol 23, 1528–1536 (2013). https://doi.org/10.1007/s00330-012-2742-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2742-5

Keywords

Navigation