Skip to main content

Advertisement

Log in

Application of the diffusion kurtosis model for the study of breast lesions

European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in the differentiation and characterisation of breast lesions.

Methods

Thirty-six women underwent breast magnetic resonance imaging (MRI) including a DWI sequence with multiple b-values (50–3,000 s/mm2). Mean values for apparent diffusion coefficient (ADC), mean diffusivity (MD) and mean kurtosis (MK) were calculated by lesion type and histological subtype. Differences and correlation between parameters were determined.

Results

Forty-four lesions were found. There were significant differences between benign and malignant lesions for all parameters (ADC, p = 0.017; MD, p = 0.028; MK, p = 0.017). ADC and MD were higher for benign (1.96 ± 0.41 × 10−3 and 2.17 ± 0.42 × 10−3 mm2/s, respectively) than for malignant lesions (1.33 ± 0.18 × 10−3 and 1.52 ± 0.50 × 10−3 mm2/s). MK was higher for malignant (0.61 ± 0.27) than benign lesions (0.37 ± 0.18). We found differences between invasive ductal carcinoma (IDC) and fibroadenoma (FA) for all parameters (ADC, MD and MK): p = 0.016, 0.022 and 0.016, respectively. FA and fibrocystic change (FC) showed differences only in MK (p = 0.016).

Conclusions

Diffusion in breast lesions follows a non-Gaussian distribution. MK enables differentiation and characterisation of breast lesions, providing new insights into microstructural complexity. To confirm these results, further investigation in a broader sample should be performed.

Key Points

• The diffusion kurtosis model provides new information regarding breast lesions

• MD and MK are valid parameters to characterise tissue microstructure

• MK enables improved lesion differentiation

• MK is able to differentiate lesions that display similar ADC values

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

DWI:

Diffusion-weighted imaging

ADC:

Apparent diffusion coefficient

PDF:

Probability of displacement function

DKI:

Diffusion kurtosis imaging

MD:

Mean diffusivity

MK:

Mean kurtosis

IDC:

Invasive ductal carcinoma

ILC:

Invasive lobular carcinoma

References

  1. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  2. Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351

    Article  PubMed  Google Scholar 

  3. Peters N, Vincken K, Van den Bosch M, Luijten P, Mali W, Bartels L (2010) Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of b-values. J Magn Reson Imaging 31:1100–1105

    Article  PubMed  Google Scholar 

  4. El Khouli R, Jacobs AM, Mezban DS, Huang P, Kamel JK, Bluemke AD (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73

    Article  Google Scholar 

  5. Lo G, Ai V, Chan J et al (2009) Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 33:63–69

    Article  PubMed  Google Scholar 

  6. Pereira F, Martins G, Oliveira R (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110

    Article  PubMed  Google Scholar 

  7. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–67

    Article  PubMed  Google Scholar 

  8. Gillies R, Raghunand N, Karczmar G, Bhujwalla Z (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Article  PubMed  Google Scholar 

  9. Jensen J, Helpern J, Ramani A, Lu H, Kaczynski K (2005) Diffusion kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440

    Article  PubMed  Google Scholar 

  10. Tamura T, Usui S, Murakami S et al (2012) Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer. Magn Reson Med 68:890–897

    Article  PubMed  Google Scholar 

  11. Poot DH, Den Dekker AJ, Achten E, Verhoye M, Sijbers J (2010) Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging 29:3

    Article  Google Scholar 

  12. Jansen J, Stambuk H, Koutcher J, Shukla-Dave A (2010) Non-Gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study. AJNR Am J Neuroradiol 31:741–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Quentin M, Blondin D, Klasen J et al (2012) Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging 30:1468–1474

    Article  PubMed  Google Scholar 

  14. Cheung M, Hui E, Chan K, Helpen J, Qi L, Wu E (2009) Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage 45:386–392

    Article  PubMed  Google Scholar 

  15. Falangola MF, Jensen JH, Babb JS et al (2008) Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging 28:1345–50

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chen S, Pickard JD, Harris NG (2003) Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 1:87–102

    Article  Google Scholar 

  17. Raab P, Hattingen E, Franz K, Zanella FE, Lanferman H (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254:876–81

    Article  PubMed  Google Scholar 

  18. Trampel R, Jensen JH, Lee RF, Kamenetskiy I, McGuinness G, Johnson G (2006) Diffusional kurtosis imaging in the lung using hyperpolarized 3He. Magn Reson Med 56:733–737

    Article  PubMed  Google Scholar 

  19. Borlinhas F, Lacerda L, Andrade A, Ferreira HA (2012) Diffusional kurtosis as a biomarker of breast tumors (E-poster presentation). European Congress of Radiology 2012, 1–5 March 2012, Vienna, Austria. doi:10.1594/erc2012/C-1369

  20. Ikeda DM, Hylton NM, Kuhl CK et al (2003) BI-RADS: magnetic resonance imaging, 1st edn. In: D’Orsi CJ, Mendelson EB, Ikeda DM et al (eds) Breast imaging reporting and data system: ACR BI-RADS—breast imaging atlas. American College of Radiology, Reston

    Google Scholar 

  21. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  22. Costantini M, Belli P, Rinaldi P (2010) Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 65:1008–1012

    Article  Google Scholar 

  23. Paran Y, Bendel P, Margalit R, Degani H (2004) Water diffusion in the different microenvironments of breast cancer. NMR Biomed 17:170–180

    Article  PubMed  Google Scholar 

  24. Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836

    Article  CAS  PubMed  Google Scholar 

  25. Sukstanskii AL, Yablonskiy DA (2002) Effects of restricted diffusion on MR signal formation. J Magn Reson 157:92–105

    Article  CAS  PubMed  Google Scholar 

  26. Kiselev VG, Il’yasov KA (2007) Is the “biexponential diffusion” biexponential? Magn Reson Med 57:464–469

    Article  PubMed  Google Scholar 

  27. Pereira F, Martins G, Oliveira R (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110

    Article  PubMed  Google Scholar 

  28. De Santis S, Gabrielli A, Palombo M, Maraviglia B, Capuani S (2011) Non-Gaussian diffusion imaging: a brief practical review. Magn Reson Imaging 29:1410–1416

    Article  PubMed  Google Scholar 

  29. Fornasa F (2011) Diffusion-weighted magnetic resonance imaging: what makes water run fast or slow? J Clin Imaging Sci 1:1–7

    Article  Google Scholar 

  30. Roth Y, Ocherashvilli A, Daniels D et al (2008) Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 26:88–102

    Article  PubMed  Google Scholar 

  31. Koh D, Collins D (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Isabel Maria Amorim Pereira Ramos. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This work was sponsored by Foundation of Science and Technology (FCT)/School of Health Technology of Porto (ESTSP)/Polytechnic Institute of Porto (IPP) with grant number: SFRH/BD/50027/2009 and grant number: PEst-OE/SAU/UI0645/2011. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Nogueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, L., Brandão, S., Matos, E. et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol 24, 1197–1203 (2014). https://doi.org/10.1007/s00330-014-3146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3146-5

Keywords

Navigation