Skip to main content
Log in

Heteroclinic Ratchets in Networks of Coupled Oscillators

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We analyze an example system of four coupled phase oscillators and discover a novel phenomenon that we call a “heteroclinic ratchet”; a particular type of robust heteroclinic network on a torus where connections wind in only one direction. The coupling structure has only one symmetry, but there are a number of invariant subspaces and degenerate bifurcations forced by the coupling structure, and we investigate these. We show that the system can have a robust attracting heteroclinic network that responds to a specific detuning Δ between certain pairs of oscillators by a breaking of phase locking for arbitrary Δ>0 but not for Δ≤0. Similarly, arbitrary small noise results in asymmetric desynchronization of certain pairs of oscillators, where particular oscillators have always larger frequency after the loss of synchronization. We call this heteroclinic network a heteroclinic ratchet because of its resemblance to a mechanical ratchet in terms of its dynamical consequences. We show that the existence of heteroclinic ratchets does not depend on symmetry or number of oscillators but depends on the specific connection structure of the coupled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar, M.A.D., Dias, A.P.S., Golubitsky, M., Leite, M.C.A.: Homogenous coupled cell networks with S 3-symmetric quotient. DCDS Supplement, pp. 1–9 (2007)

  • Aguiar, M.A.D., Ashwin, P., Dias, A.P.S., Field, M.: Robust heteroclinic cycles in coupled cell systems: identical cells with asymmetric inputs. Preprint (2009)

  • Ashwin, P., Borresen, J.: Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys. Rev. E 70(2), 026203 (2004)

    Article  MathSciNet  Google Scholar 

  • Ashwin, P., Borresen, J.: Discrete computation using a perturbed heteroclinic network. Phys. Lett. A 347(4–6), 208–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Swift, J.W.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2(1), 69–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Burylko, O., Maistrenko, Y., Popovych, O.: Extreme sensitivity to detuning for globally coupled phase oscillators. Phys. Rev. Lett. 96(5), 054102 (2006)

    Article  Google Scholar 

  • Ashwin, P., Orosz, G., Wordsworth, J., Townley, S.: Dynamics on networks of clustered states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Syst. 6(4), 728–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Burylko, O., Maistrenko, Y.: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D 237, 454–466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Busse, F.H., Clever, R.M.: Nonstationary convection in a rotating system. In: Müller, U., Roesner, K.G., Schmidt, B. (eds.) Recent Developments in Theoretical and Experimental Fluid Dynamics, pp. 376–385. Springer, Berlin (1979)

    Chapter  Google Scholar 

  • Ermentrout, G.B.: A Guide to XPPAUT for Researchers and Students. SIAM, Pittsburgh (2002)

    MATH  Google Scholar 

  • Feng, B.Y., Hu, R.: A survey on homoclinic and heteroclinic orbits. Appl. Math. E-Notes 3, 16–37 (2003) (electronic)

    MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I.: The Symmetry Perspective. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc. (N.S.) 43(3), 305–364 (2006) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst. 19(4), 389–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Philos. Soc. 103, 189–192 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C.: Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E 48(5), 3470–3477 (1993)

    Article  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  • Kiss, I.Z., Rusin, C.G., Kori, H., Hudson, J.L.: Engineering complex dynamical structures: Sequential patterns and desynchronization. Science 316, 1886–1889 (2007)

    Article  MathSciNet  Google Scholar 

  • Kori, H., Kuramoto, Y.: Slow switching in globally coupled oscillators: Robustness and occurence through delayed coupling. Phys. Rev. E 63, 046214 (2001)

    Article  Google Scholar 

  • Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7(2), 129–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory. Dyn. Syst. 15, 121–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  • Melbourne, I.: Intermittency as a codimension-three phenomenon. J. Dyn. Differ. Equ. 1(4), 347–367 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  • Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Generation and reshaping of sequences in neural systems. Biol. Cybern. 95, 519–536 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 95, 519–536 (2006b)

    MATH  Google Scholar 

  • Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entrainment. Prog. Theor. Phys. 76(3), 576–581 (1986)

    Article  MathSciNet  Google Scholar 

  • Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2(11), 1910–1918 (2004)

    Article  Google Scholar 

  • Stone, E., Holmes, P.: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math. 50(3), 726–743 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz, S.H.: From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai, Y.M., Kiss, I.Z., Daido, H., Hudson, J.L.: Extracting order parameters from global measurements with application to coupled electrochemical oscillators. Physica D 205, 57–69 (2005)

    Article  MATH  Google Scholar 

  • Zhigulin, P.Z.: Dynamical motifs: Building blocks of complex dynamics in sparsely connected random networks. Phys. Rev. Lett. 92(23), 238701 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özkan Karabacak.

Additional information

Communicated by P. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabacak, Ö., Ashwin, P. Heteroclinic Ratchets in Networks of Coupled Oscillators. J Nonlinear Sci 20, 105–129 (2010). https://doi.org/10.1007/s00332-009-9053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9053-2

Keywords

Mathematics Subject Classification (2000)

Navigation