Skip to main content

Advertisement

Log in

Analysis of a Compressed Thin Film Bonded to a Compliant Substrate: The Energy Scaling Law

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the deformation of a thin elastic film bonded to a thick compliant substrate, when the (compressive) misfit is far beyond critical. We take a variational viewpoint—focusing on the total elastic energy, i.e. the membrane and bending energy of the film plus the elastic energy of the substrate—viewing the buckling of the film as a problem of energy-driven pattern formation. We identify the scaling law of the minimum energy with respect to the physical parameters of the problem, and we prove that a herringbone pattern achieves the optimal scaling. These results complement previous numerical studies, which have shown that an optimized herringbone pattern has lower energy than a number of other patterns. Our results are different, because (i) we make the scaling law achieved by the herringbone pattern explicit, and (ii) we give an elementary, ansatz-free proof that no pattern can achieve a better law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In giving the substrate energies of u 3 and w the same weight in (7) we have ignored a constant of order one; as discussed earlier, this is appropriate since we seek only the energy scaling law.

  2. The paper Audoly and Boudaoud (2008c) proposes the Miura-ori construction as a model for the herringbone pattern in the far-from-critical regime; in particular, it does not differentiate between the two. In our view, however, a key difference is that the Miura-ori construction involves sharp creases, while the herringbone pattern involves smooth wrinkles.

  3. Here and in the rest of the paper, ab means aCb for some positive universal constant C. Similarly, ab means that aCb for some constant C, and ab means ab and ba.

  4. The summary presented here focuses on the rescaled problem, with misfit η=1. For a brief summary using the original variables see Remark 2 at the end of this section.

References

  • Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56, 2401–2421 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part II: A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56, 2422–2443 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  • Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part III: Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008c)

    Article  MathSciNet  MATH  Google Scholar 

  • Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math., to appear

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl–von Karman theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–683 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films—three dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164, 1–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  Google Scholar 

  • Breid, D., Crosby, A.J.: Surface wrinkling behavior of finite circular plates. Soft Matter 5, 425–431 (2009)

    Article  Google Scholar 

  • Cai, S., Breid, D., Crosby, A.J., Suo, Z., Hutchinson, J.W.: Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094–1114 (2011)

    Article  MathSciNet  Google Scholar 

  • Chen, X., Hutchinson, J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004a)

    Article  MATH  Google Scholar 

  • Chen, X., Hutchinson, J.W.: A family of herringbone patterns in thin films. Scr. Mater. 50, 797–801 (2004b)

    Article  Google Scholar 

  • Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Choksi, R., Conti, S., Kohn, R.V., Otto, F.: Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor. Commun. Pure Appl. Math. 61, 595–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53, 1448–1474 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187, 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Davidovitch, B., Schroll, R.D., Vella, D., Addia-Bedia, M., Cerda, E.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108, 18227–18232 (2011)

    Article  Google Scholar 

  • Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., Genzer, J.: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293–297 (2005)

    Article  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Genzer, J., Groenewold, J.: Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2, 310–323 (2006)

    Article  Google Scholar 

  • Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)

    Article  Google Scholar 

  • Huang, Z., Hong, W., Suo, Z.: Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601(R) (2004)

    Google Scholar 

  • Huang, Z., Hong, W., Suo, Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, R., Im, S.H.: Dynamics of wrinkle growth and coarsening in stressed thin films. Phys. Rev. E 74, 026214 (2006)

    Article  Google Scholar 

  • Im, S.H., Huang, R.: Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J. Mech. Phys. Solids 56, 3315–3330 (2008)

    Article  MATH  Google Scholar 

  • Jagla, E.: Modeling the buckling and delamination of thin films. Phys. Rev. B 75, 085405 (2007)

    Article  Google Scholar 

  • Jin, W., Sternberg, P.: Energy estimates for the von Karman model of thin-film blistering. J. Math. Phys. 42, 192–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47, 405–435 (1994)

    Article  MATH  Google Scholar 

  • Kohn, R.V., Nguyen, H.: Tension-induced wrinkling in a confined film: the energy scaling law and the associated cascade, in preparation

  • Lin, P.-C., Yang, S.: Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 90, 241903 (2007)

    Article  Google Scholar 

  • Lobkovsky, A.E., Witten, T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589 (1997)

    Article  Google Scholar 

  • Mahadevan, L., Rica, S.: Self-organized origami. Science 307, 1740 (2005)

    Article  Google Scholar 

  • Ni, Y., He, L., Liu, Q.: Modeling kinetics of diffusion-controlled surface wrinkles. Phys. Rev. E 84, 051604 (2011)

    Article  Google Scholar 

  • Song, J., Jiang, H., Choi, W.M., Khang, D.Y., Huang, Y., Rogers, J.A.: An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008a)

    Article  Google Scholar 

  • Song, J., Jiang, H., Liu, Z.J., Khang, D.Y., Huang, Y., Rogers, J.A., Lu, C., Koh, C.G.: Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008b)

    Article  MATH  Google Scholar 

  • Song, J., Jiang, H., Huang, Y., Rogers, J.A.: Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27, 1107–1125 (2009)

    Article  Google Scholar 

  • Sultan, E., Boudaoud, A.: The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. 75, 051002 (2008)

    Article  Google Scholar 

  • Vandeparre, H., Damman, P.: Wrinkling of stimuloresponsive surfaces: mechanical instability coupled to diffusion. Phys. Rev. Lett. 101, 124301 (2008)

    Article  Google Scholar 

  • Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17, 301–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, J., Chen, X., Sheinman, I.: Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470–1484 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

R.V.K. gratefully acknowledges partial support from NSF grants DMS-0807347 and OISE-0967140. H.-M.N. gratefully acknowledges partial support from NSF grant DMS-1201370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Kohn.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, R.V., Nguyen, HM. Analysis of a Compressed Thin Film Bonded to a Compliant Substrate: The Energy Scaling Law. J Nonlinear Sci 23, 343–362 (2013). https://doi.org/10.1007/s00332-012-9154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9154-1

Keywords

Mathematics Subject Classification

Navigation