Skip to main content
Log in

Continuous Data Assimilation Using General Interpolant Observables

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present a new continuous data assimilation algorithm based on ideas that have been developed for designing finite-dimensional feedback controls for dissipative dynamical systems, in particular, in the context of the incompressible two-dimensional Navier–Stokes equations. These ideas are motivated by the fact that dissipative dynamical systems possess finite numbers of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages which govern their long-term behavior. Therefore, our algorithm allows the use of any type of measurement data for which a general type of approximation interpolation operator exists. Under the assumption that the observational measurements are free of noise, our main result provides conditions, on the finite-dimensional spatial resolution of the collected data, sufficient to guarantee that the approximating solution, obtained by our algorithm from the measurement data, converges to the unknown reference solution over time. Our algorithm is also applicable in the context of signal synchronization in which one can recover, asymptotically in time, the solution (signal) of the underlying dissipative system that is corresponding to a continuously transmitted partial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, J.P.: Un théorème de compacité. C.R. Acad. Sci. Paris Sér. I Math. 256, 5042–5044 (1963)

    MATH  MathSciNet  Google Scholar 

  • Azouani, A., Titi, E.S.: Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm (2013). arXiv:1301.6992

  • Bessaih, H., Olson, E., Titi, E.S.: Continuous data assimilation of stochastically noisy data. In preparation (2013)

  • Blömker, D., Law, K.J.H., Stuart, A.M., Zygalakis, K.C.: Accuracy and stability of the continuous-times 3DVAR filter for the Navier–Stokes equations. Nonlinearity 26, 2193–2219 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2007)

    Google Scholar 

  • Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Browning, G.L., Henshaw, W.D., Kreiss, H.O.: A numerical investigation of the interaction between the large and small scales of the two-dimensional incompressible Navier–Stokes equations. Research Report LA-UR-98-1712, Los Alamos National Laboratory, (1998)

  • Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245–267 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-alpha model of turbulence. Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Jones, D.A., Titi, E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66(219), 1073–1087 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  • Daley, R.: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Dascaliuc, R., Foias, C., Jolly, M.S.: Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence. J. Differ. Equ. 248, 792–819 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Semin. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  Google Scholar 

  • Foias, C., Temam, R.: Sur la détermination d’un écoulement fluide par des observations discrètes. C. R. Acad. Sci. Paris Sér. I Math. 295(3), 239–241 (1982). The continuation in 295(9), 523–525 (1982)

    MATH  MathSciNet  Google Scholar 

  • Foias, C., Temam, R.: Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 43(167), 117–133 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Foias, C., Titi, E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4(1), 135–153 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Foias, C., Jolly, M., Kravchenko, R., Titi, E.S.: A determining form for the 2D Navier-Stokes equations—the Fourier modes case. J. Math. Phys. 53, 115623 (2012)

    Article  MathSciNet  Google Scholar 

  • Gesho, M.: A numerical study of continuous data assimilation using nodal points in space for the two-dimensional Navier–Stokes equations. Masters Thesis, University of Nevada, Department of Mathematics and Statistics (2013)

  • Hayden, K., Olson, E., Titi, E.S.: Discrete data assimilation in the Lorenz and 2d Navier–Stokes equations. Physica D: Nonlinear Phenom. 240(18), 1416–1425 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Henshaw, W.D., Kreiss, H.O., Yström, J.: Numerical experiments on the interaction between the large and small-scale motions of the Navier–Stokes equations. Multiscale Model. Simul. 1(1), 119–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, D.A., Titi, E.S.: Determining finite volume elements for the 2D Navier–Stokes equations. Physica D 60, 165–174 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, D.A., Titi, E.S.: Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Korn, P.: Data assimilation for the Navier–Stokes-α equations. Physica D 238, 1957–1974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Problems. Springer, Berlin (1972)

    Book  Google Scholar 

  • Olson, E., Titi, E.S.: Determining modes for continuous data assimilation in 2D turbulence. J. Stat. Phys. 113(5–6), 799–840 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Olson, E., Titi, E.S.: Determining modes and Grashof number in 2D turbulence. Theor. Comput. Fluid Dyn. 22(5), 327–339 (2008)

    Article  MATH  Google Scholar 

  • Robinson, J.: In: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics (2001)

    Google Scholar 

  • Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. CBMS Regional Conference Series, vol. 41. SIAM, Philadelphia (1983)

    Google Scholar 

  • Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, revised edn. AMS/Chelsea, New York (2001)

    Google Scholar 

  • Titi, E.S.: On a criterion for locating stable stationary solutions to the Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 11, 1085–1102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of A.A. is supported in part by the DFG grants SFB-910 and SFB-947. E.S.T. is thankful to the kind hospitality of the Freie Universität Berlin, where this work was initiated. E.S.T. also acknowledges the partial support of the Alexander von Humboldt Stiftung Foundation, the Minerva Stiftung Foundation, and the National Science Foundation grants DMS-1009950, DMS-1109640 and DMS-1109645. We would also like to thank the anonymous referees for their careful reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Olson.

Additional information

Communicated by P. Newton.

Appendix A: Estimates for Nodal Interpolants

Appendix A: Estimates for Nodal Interpolants

This appendix contains inequalities and estimates for interpolant operators that will be used for observables obtained from nodal measurements of the velocity field.

Consider a function \(u \in H^{2}_{\rm{per}}(\varOmega)\), where Ω=[0,L]2 is a basic domain of periodicity. Let \(\sqrt{N}\) be a positive integer and partition Ω into N squares with sides of length \(h=L/{\sqrt{N}}\). Let \(\mathcal{J}=\{1,2,\ldots, \sqrt{N}\}^{2}\) and for each \(\alpha\in \mathcal{J}\) define the semi-open square

$$\begin{aligned} Q_\alpha=\big[jh,(j+1)h\big)\times\big[kh,(k+1)h\big),\quad\hbox{where } \alpha=(i,j)\in \mathcal{J}. \end{aligned}$$

Moreover, for φL 1(Ω) we denote

$$\begin{aligned} \langle\varphi\rangle= \frac{1}{L^2}\int_{\varOmega}\varphi(x) \, \mathrm{d}x. \end{aligned}$$

Fix nodal points x α Q α , and suppose we are given the nodal values u(x α ), for every \(\alpha\in \mathcal{J}\). Based on these nodal values, we define two interpolant operators, I h and \(\tilde{I}_{h}\), which we will show that they satisfy the approximation estimate (7). Specifically, define

$$ \mathcal{I}_h(u) (x)=\sum_{\alpha\in \mathcal{J}} u(x_\alpha) \psi_\alpha(x), $$
(41)

and

$$ I_h(u) (x)= \mathcal{I}_h(u) (x) - \bigl\langle \mathcal{I}_h(u)\bigr\rangle = \sum_{\alpha\in \mathcal{J}} u(x_\alpha) \bigl(\psi_\alpha(x)- \langle\psi_\alpha \rangle \bigr), $$
(42)

where

$$\begin{aligned} \psi_\alpha(x)=\sum_{(j,k)\in \mathbf{Z}^2} \chi_{Q_\alpha}(x_1+jL,x_2+kL), \end{aligned}$$

is the L-periodic characteristic function of the semi-open square Q α . Next, we define

$$ {\tilde{\mathcal{I}}}_h(u) (x)=\sum_{\alpha\in \mathcal{J}} u(x_\alpha) {\tilde{\psi}}_\alpha(x), $$
(43)

and

$$ {\tilde{I}}_h(u) (x)= {\tilde{\mathcal{I}}}_h(u) (x)- \bigl\langle {\tilde{\mathcal{I}}}_h(u)\bigr\rangle =\sum _{\alpha\in \mathcal{J}} u(x_\alpha) \bigl({\tilde{\psi}}_\alpha (x) - \langle{\tilde{\psi}}_\alpha\rangle \bigr), $$
(44)

where

$$\begin{aligned} \tilde{\psi}_\alpha(x)= (\rho_\epsilon *\psi_\alpha) (x) \end{aligned}$$

is a mollified version of ψ α by the mollifier ρ ϵ (x)=ϵ −2 ρ(x/ϵ). Here we take

$$\begin{aligned} \rho(\xi)= \begin{cases} K_0 \displaystyle \exp \biggl({1\over1-|\xi|^2} \biggr)& \mbox{for } |\xi|<1\\ 0 & \mbox{for } |\xi|\ge1, \end{cases} \end{aligned}$$

and

$$\begin{aligned} (K_0)^{-1}=\int_{|\xi|<1} \exp \biggl( {1\over1-|\xi|^2} \biggr)\,\mathrm{d}\xi. \end{aligned}$$

The mollification parameter ϵ will be chosen \(\epsilon= \frac{h}{10}\).

Observe that \(\langle I_{h}\rangle= \langle\tilde{I}_{h}\rangle=0\), and that \(\tilde{\mathcal{I}}_{h}(x)\) and \(\tilde{I}_{h}(x)\) are C periodic functions.

We now state as Proposition 4 the estimate that was proved by Jones and Titi as inequality (6.2) in Jones and Titi (1993).

Proposition 4

Let Q be a square with sides of length >0, and φH 2(Q). Then for every x,yQ one has

$$\begin{aligned} \big|\varphi(x)-\varphi(y)\big|\le2 \biggl( 4\big\| \nabla\varphi\big\| _{L^2(Q)}^2 +\ell^2 \bigg\| {\partial^2 \varphi\over\partial x_1\partial x_2} \bigg\| _{L^2(Q)}^2 \biggr)^{1/2}. \end{aligned}$$

We now use Proposition 4 to obtain estimate (7) concerning the accuracy of the interpolant operators \(\mathcal{I}_{h}\) and I h . Namely, we have

Proposition 5

Suppose \(u\in H_{\rm{per}}^{2}(\varOmega)\), and let \(\mathcal{I}_{h}(u)\) and I h (u) be as in (41) and (42), respectively. Then

  1. (i)

    \(\|u-\mathcal{I}_{h}(u) \|_{L^{2}(\varOmega)} \le4 h \|\nabla u \|_{L^{2}(\varOmega)} +2 h^{2} \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)}\).

  2. (ii)

    \(\|(u-\langle u \rangle) -I_{h}(u) \|_{L^{2}(\varOmega)} \le 8h \|\nabla u \|_{L^{2}(\varOmega)} + 4h^{2} \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)}\).

Moreover, ifu〉=0, then there exists a constant c>0 such that we can replace the term \(\| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)}\), in the above estimates, by \(c \| \Delta u \|_{L^{2}(\varOmega)}\).

Proof

First observe that

$$\begin{aligned} \sum_{\alpha\in \mathcal{J}} \psi_\alpha(x) = 1 \quad \hbox{for every }x\in \mathbf{R}^2. \end{aligned}$$

Therefore,

$$\begin{aligned} \big\| u-\mathcal{I}_h(u)\big\| _{L^2(\varOmega)}^2 =&\int _{\varOmega} \bigg|u(x) -\sum_{\alpha\in \mathcal{J}} u(x_\alpha)\psi_\alpha(x) \bigg|^2\, \mathrm{d}x \\ =&\int_{\varOmega} \bigg| \sum_{\alpha\in \mathcal{J}} \bigl(u(x)-u(x_\alpha) \bigr) \psi_\alpha(x) \bigg|^2\, \mathrm{d}x \\ =&\int_{\varOmega} \sum_{\alpha,\beta\in \mathcal{J}} \bigl(u(x)-u(x_\alpha) \bigr) \cdot \bigl(u(x)-u(x_\beta) \bigr) \psi_\alpha(x) \psi_\beta(x)\,\mathrm{d}x. \end{aligned}$$

Since

$$\begin{aligned} \psi_\alpha(x)\psi_\beta(x)= \begin{cases} 0 & \mbox{if } \alpha\ne\beta\\ \psi_\alpha(x) & \mbox{if } \alpha=\beta, \end{cases} \end{aligned}$$

the above gives

$$\begin{aligned} \big\| u-\mathcal{I}_h(u)\big\| _{L^2(\varOmega)}^2 =\int _{\varOmega} \sum_{\alpha\in \mathcal{J}} \big|u(x)-u(x_\alpha) \big|^2 \psi^2_\alpha(x)\, \mathrm{d}x. \end{aligned}$$

Applying Proposition 4 to the square \(\overline{Q}_{\alpha}\) we obtain

$$\begin{aligned} \big|u(x)-u(x_\alpha)\big|^2\le 4 \biggl( 4\|\nabla u \|_{L^2(Q_\alpha)}^2 +h^2 \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| _{L^2(Q_\alpha)}^2 \biggr),\quad {\hbox{for every }} x \in \overline{Q}_\alpha. \end{aligned}$$

Hence

$$\begin{aligned} \big\| u-\mathcal{I}_h(u)\big\| _{L^2(\varOmega)}^2 \le&\sum _{\alpha\in J} 4h^2 \biggl( 4 \|\nabla u \|_{L^2(Q_\alpha)}^2 +h^2 \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| _{L^2(Q_\alpha)}^2 \biggr) \\ \le& 16h^2\|\nabla u\|_{L^2(\varOmega)}^2 +4h^4 \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| _{L^2(\varOmega)}^2; \end{aligned}$$

which proves (i).

Next, we focus on proving (ii). By virtue of the Cauchy–Schwarz inequality we observe that

$$\begin{aligned} \big\| \langle u \rangle- \bigl\langle \mathcal{I}_h(u)\bigr\rangle \big\| _{L^2(\varOmega)} \le \big\| u - \mathcal{I}_h(u) \big\| _{L^2(\varOmega)}. \end{aligned}$$

Therefore, (ii) follows from combining the triangle inequality together with the above observation, (41), (42), and part (i).

Finally, we recall the fact that for 〈u〉=0 one has \(\| u \|_{H^{2}(\varOmega)}\le c \| \Delta u \|_{L^{2}(\varOmega )}\), which concludes the proof. □

We now provide similar estimates for the C periodic interpolants \(\tilde{\mathcal{I}}_{h}\) and \(\tilde{I}_{h}\). In order to do this we make the assumptions that N≥9 and \(\epsilon=\frac{h}{10}\). Define

$$\begin{aligned} \tilde{Q}_\alpha =\bigl[(j-1)h,(j+2)h\bigr]\times\bigl[(k-1)h,(k+2)h \bigr], \quad\hbox{where } \alpha=(k,j)\in \mathcal{J}. \end{aligned}$$

Since ϵ<h/2 we obtain

$$\begin{aligned} \mathcal{U}_\alpha=Q_\alpha+B(0,\epsilon) =\{ x+y : x\in Q_\alpha\hbox{ and }|y|<\epsilon\} \subseteq\tilde{Q}_\alpha,\quad \hbox{for } \alpha\in \mathcal{J}, \end{aligned}$$

and

$$\begin{aligned} \mathcal{C}_\alpha=\mathcal{U}_\alpha\setminus\bigcup _{\beta\ne\alpha } \mathcal{U}_\beta \ne\emptyset, \quad\hbox{for } \alpha\in \mathcal{J}. \end{aligned}$$

The following two propositions now follow immediately from the definition of \(\tilde{\psi}_{\alpha}\) and the fact that \(\epsilon=\frac{h}{10}\).

Proposition 6

The functions \(\tilde{\psi}_{\alpha}\), for \(\alpha\in \mathcal{J}\), form a smooth partition of unity satisfying

  1. (i)

    \(0 \le\tilde{\psi}_{\alpha}(x)\le1\), and \({\rm supp}(\tilde{\psi}_{\alpha})\subseteq (\mathcal{U}_{\alpha}+ (L \mathbf{ Z} )^{2} )\),

  2. (ii)

    \(\tilde{\psi}_{\alpha}(x)=1\), for all \(x\in (\mathcal {C}_{\alpha}+ (L \mathbf{Z} )^{2} )\), and \(\sum_{\alpha\in \mathcal{J}} \tilde{\psi}_{\alpha}(x)=1\), for all xR 2,

  3. (iii)

    \(\langle\tilde{\psi}_{\alpha}\rangle= (\frac{h}{L} )^{2}\) and \(\frac{4}{5} h \le \|\tilde{\psi}_{\alpha}\| _{L^{2}(\varOmega)} \le\frac{6}{5} h\),

  4. (iv)

    \({\rm supp}(\nabla\tilde{\psi}_{\alpha})\subseteq ( (\mathcal{U}_{\alpha}\setminus\mathcal{C}_{\alpha})+ L \mathbf {Z}^{2} )\),

  5. (v)

    \(|\nabla\tilde{\psi}_{\alpha}(x)|\le c h^{-1}\), and \(|\frac {\partial^{2}}{\partial x_{i} \partial x_{j}}\tilde{\psi}_{\alpha}(x)|\le c h^{-2}\), for all xR 2,

  6. (vi)

    \(\|\nabla\tilde{\psi}_{\alpha}\|_{L^{2}(\varOmega)} \le c \).

Proposition 7

Let \(\mathcal{K}=\{ -1,0,1\}^{2}\). The functions \(\tilde{\psi}_{\alpha}\) are nearly orthogonal in the following sense:

  1. (i)

    \(\int_{\varOmega} \tilde{\psi}_{\alpha}(x) \tilde{\psi}_{\beta}(x)\, \mathrm{d}x=\int_{\varOmega} (\nabla\tilde{\psi}_{\alpha}(x) ) \cdot (\nabla\tilde{\psi}_{\beta}(x) )\,\mathrm{d}x=0\) for all \(\alpha,\beta\in \mathcal{J}\) with \(\beta-\alpha\notin\mathcal{K}\).

  2. (ii)

    \(|\int_{\varOmega} \tilde{\psi}_{\alpha}(x) \tilde{\psi}_{\beta}(x)\,\mathrm{d}x | \le(h+2\epsilon)^{2}= \frac{36}{25}h^{2}\), for all \(\alpha,\beta\in \mathcal{J}\) with \(\beta-\alpha\in\mathcal{K}\).

  3. (iii)

    \(|\int_{\varOmega} (\nabla\tilde{\psi}_{\alpha}(x) ) \cdot (\nabla\tilde{\psi}_{\beta}(x) )\,\mathrm{d}x | \le c\), for all \(\alpha,\beta\in \mathcal{J}\) with \(\beta-\alpha\in\mathcal{K}\).

We are now ready to prove estimates concerning the accuracy of the interpolant operators \({\tilde{\mathcal{I}}}_{h}\) and \(\tilde{I}_{h}\) that are the analog to those of Proposition 5.

Proposition 8

Suppose \(u\in H_{\rm{per}}^{2}(\varOmega)\), and let \(\tilde{\mathcal{I}}_{h}(u)\) and \(\tilde{I}_{h}(u)\) be as in (43) and (44), respectively. Then there exists a constant c>0 such that

  1. (i)

    \(\|u-\tilde{\mathcal{I}}_{h}(u)\|_{L^{2}(\varOmega)} \le c (h \|\nabla u\|_{L^{2}(\varOmega)} + h^{2} \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)} )\).

  2. (ii)

    \(\| (u-\langle u \rangle )-\tilde{I}_{h}(u)\| _{L^{2}(\varOmega)} \le c (h \|\nabla u\|_{L^{2}(\varOmega)} + h^{2} \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)} )\).

  3. (iii)

    \(\| \nabla\tilde{I}_{h}(u)\|_{L^{2}(\varOmega)}=\| \nabla \tilde {\mathcal{I}}_{h}(u)\|_{L^{2}(\varOmega)} \le c ( \|\nabla u\|_{L^{2}(\varOmega)} + h \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)} )\).

  4. (iv)

    \(\| \nabla(u - \tilde{I}_{h}(u))\|_{L^{2}(\varOmega)} =\| \nabla(u - \tilde{\mathcal{I}}_{h}(u))\|_{L^{2}(\varOmega)}\le c ( \|\nabla u\|_{L^{2}(\varOmega)} + h \| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)} )\).

Moreover, ifu〉=0, then there exists a constant c>0 such that we can replace the term \(\| {\partial^{2} u\over\partial x_{1}\partial x_{2}} \|_{L^{2}(\varOmega)}\), in the above estimates, by \(c \| \Delta u \|_{L^{2}(\varOmega)}\).

Proof

In what follows we will use some of the properties stated in Propositions 6 and 7.

$$\begin{aligned} \big\| u-\tilde{\mathcal{I}}_h(u)\big\| _{L^2(\varOmega)}^2 =&\int _{\varOmega} \bigg|u(x) -\sum_{\alpha\in \mathcal{J}} u(x_\alpha)\tilde{\psi}_\alpha(x) \bigg|^2 \,\mathrm{d}x \\ =&\int_{\varOmega} \bigg| \sum_{\alpha\in \mathcal{J}} \bigl(u(x)-u(x_\alpha) \bigr) \tilde{\psi}_\alpha(x) \bigg|^2 \, \mathrm{d}x \\ =&\int_{\varOmega} \sum_{\alpha,\beta\in \mathcal{J}} \bigl(u(x)-u(x_\alpha) \bigr) \cdot \bigl(u(x)-u(x_\beta) \bigr) \tilde{\psi}_\alpha(x) \tilde{\psi}_\beta(x)\,\mathrm{d}x. \end{aligned}$$

Since \(\tilde{\psi}_{\alpha}(x)\tilde{\psi}_{\beta}(x)=0\) for \(\alpha-\beta\notin\mathcal{K}\) (see Proposition 6) we have

$$\begin{aligned} &\big\| u-\tilde{\mathcal{I}}_h(u)\big\| _{L^2(\varOmega)}^2 \\ &\quad\le\int_\varOmega\sum_{\gamma\in\mathcal{K}} \sum_{\alpha\in \mathcal{J}} \big|u(x)-u(x_\alpha)\big| \big|u(x)-u(x_{\alpha+\gamma})\big| \tilde{\psi}_\alpha(x)\tilde{\psi}_{\alpha+\gamma}(x)\,\mathrm{d}x \\ &\quad\le\sum_{\gamma\in\mathcal{K}} \biggl(\sum _{\alpha\in \mathcal{J}}\int_\varOmega \big|u(x)-u(x_\alpha)\big|^2 \bigl(\tilde{\psi}_\alpha(x) \bigr)^2\,\mathrm{d}x \biggr)^{1/2} \\ &\quad\quad{}\times \biggl(\sum_{\alpha\in \mathcal{J}}\int _\varOmega \big|u(x)-u(x_{\alpha+\gamma})\big|^2 \bigl( \tilde{\psi}_{\alpha+\gamma}(x) \bigr)^2\,\mathrm{d}x \biggr)^{1/2} \\ &\quad=9\sum_{\alpha\in \mathcal{J}}\int_\varOmega \big|u(x)-u(x_\alpha)\big|^2 \bigl(\tilde{\psi}_\alpha(x) \bigr)^2\,\mathrm{d}x \\ &\quad \le9\sum_{\alpha\in \mathcal{J}}\int _{\mathcal{U}_\alpha} \big|u(x)-u(x_\alpha)\big|^2\,\mathrm{d}x \\ &\quad\le9\sum_{\alpha\in \mathcal{J}}\int_{\tilde{Q}_\alpha} \big|u(x)-u(x_\alpha)\big|^2\,\mathrm{d}x. \end{aligned}$$

Applying Proposition 4 to each of the squares \(\tilde{Q}_{\alpha}\), for \(\alpha\in \mathcal{J}\), the above implies

$$\begin{aligned} \big\| u-\tilde{I}_h(u)\big\| _{L^2(\varOmega)}^2 \le&9\sum _{\alpha\in \mathcal{J}} 36h^2 \biggl( 4\|\nabla u \|_{L^2(\tilde{Q}_\alpha)}^2 +h^2 \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| _{L^2(\tilde{Q}_\alpha)}^2 \biggr) \\ =& 81\sum_{\alpha\in \mathcal{J}} 36h^2 \biggl( 4\|\nabla u\|_{L^2(Q_\alpha)}^2 +h^2 \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| _{L^2(Q_\alpha)}^2 \biggr) \\ =&\gamma_1 h^2 \|\nabla u\|_{L^2(\varOmega)}^2 +\gamma_2 h^4 \bigg\| {\partial u\over\partial x_1\partial x_2} \bigg\| _{L^2(\varOmega)}^2 , \end{aligned}$$

where γ 1=11664 and γ 2=2916. By this we conclude (i).

The proof of (ii) follows from (i) by following the same lines as the proof of part (ii) of Proposition 5.

Next, we focus on the proof of (iii). To this end we implement some of the steps used in the proof of part (i), above, and the properties stated in Proposition 6.

$$\begin{aligned} \big\| \nabla\tilde{\mathcal{I}}_h(u)\big\| ^2_{L^2(\varOmega)} =&\bigg\| \sum _{\alpha\in \mathcal{J}} u(x_\alpha)\nabla \tilde{\psi}_\alpha(\cdot)\bigg\| ^2_{L^2(\varOmega)} \\ =& \bigg\| \sum_{\alpha\in \mathcal{J}} u(x_\alpha)\nabla \tilde{\psi}_\alpha(\cdot)- u(\cdot)\nabla \biggl(\sum _{\alpha\in \mathcal{J}} \tilde{\psi}_\alpha(\cdot) \biggr)\bigg\| ^2_{L^2(\varOmega) } \\ =& \bigg\| \sum_{\alpha\in \mathcal{J}} \bigl(u(x_\alpha) - u( \cdot)\bigr)\nabla \tilde{\psi}_\alpha (\cdot)\bigg\| ^2_{L^2(\varOmega)} \\ \le& c \sum_{\alpha\in \mathcal{J}} \big\| \bigl(u(x_\alpha) - u( \cdot)\bigr)\nabla \tilde{\psi}_\alpha(\cdot)\big\| ^2_{L^2(\tilde{Q}_\alpha)} \\ \le&\frac{c}{h^2} \sum_{\alpha\in \mathcal{J}}\big\| \bigl(u(x_\alpha) - u(\cdot)\bigr)\big\| ^2_{L^2(\tilde{Q}_\alpha)}. \end{aligned}$$

Applying Proposition 4 to each of the squares \(\tilde{Q}_{\alpha}\), for \(\alpha\in \mathcal{J}\), in the above estimate to obtain

$$\begin{aligned} \big\| \nabla\tilde{\mathcal{I}}_h(u)\big\| ^2_{L^2(\varOmega)} \le& c \biggl( \sum_{\alpha\in \mathcal{J}} \|\nabla u\|^2_{L^2(\tilde{Q}_\alpha)} + h^2 \sum_{\alpha\in \mathcal{J}} \bigg\| {\partial^2 u\over\partial x_1\partial x_2} \bigg\| ^2_{L^2(\tilde{Q}_\alpha)} \biggr) \\ \le&9 c \biggl( \sum_{\alpha\in \mathcal{J}} \|\nabla u \|^2_{L^2(Q_\alpha)} + h^2 \sum _{\alpha\in \mathcal{J}} \bigg\| {\partial ^2 u\over\partial x_1\partial x_2} \bigg\| ^2_{L^2( Q_\alpha)} \biggr) \\ =& c \biggl(\|\nabla u\|^2_{L^2(\varOmega)} + h^2 \bigg\| {\partial^2 u\over \partial x_1\partial x_2} \bigg\| ^2_{L^2(\varOmega)} \biggr), \end{aligned}$$

which concludes the proof of point (iii).

Point (iv) is an obvious consequence of (iii). The rest of the proof is similar to Proposition 5. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azouani, A., Olson, E. & Titi, E.S. Continuous Data Assimilation Using General Interpolant Observables. J Nonlinear Sci 24, 277–304 (2014). https://doi.org/10.1007/s00332-013-9189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9189-y

Keywords

Mathematics Subject Classification

Navigation