Skip to main content

Advertisement

Log in

From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the homogenization of a set of Smoluchowski’s discrete diffusion–coagulation equations modeling the aggregation and diffusion of \(\beta \)-amyloid peptide (A\(\beta \)), a process associated with the development of Alzheimer’s disease. In particular, we define a periodically perforated domain \(\Omega _{\epsilon }\), obtained by removing from the fixed domain \(\Omega \) (the cerebral tissue) infinitely many small holes of size \(\epsilon \) (the neurons), which support a non-homogeneous Neumann boundary condition describing the production of A\(\beta \) by the neuron membranes. Then, we prove that, when \(\epsilon \rightarrow 0\), the solution of this micromodel two-scale converges to the solution of a macromodel asymptotically consistent with the original one. Indeed, the information given on the microscale by the non-homogeneous Neumann boundary condition is transferred into a source term appearing in the limiting (homogenized) equations. Furthermore, on the macroscale, the geometric structure of the perforated domain induces a correction in that the scalar diffusion coefficients defined at the microscale are replaced by tensorial quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achdou, Y., Franchi, B., Marcello, N., Tesi, M.C.: A qualitative model for aggregation and diffusion of \(\beta \)-Amyloid in Alzheimer’s disease. J. Math. Biol. 67(6–7), 1369–1392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Allaire, G.: Homogenization and two-scale convergence. Siam J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire, G., Damlamian, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. In: Bourgeat A. et al. (eds.) Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, pp. 15–25. World Scientific pub., Singapore (1996)

  • Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara 56, 141–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsch, M., Franchi, B., Marcello, N., Tesi, M.C., Tosin, A.: Alzheimer’s disease: a mathematical model for onset and progression. Math. Med. Biol. (2016, in press)

  • Bourgeat, A., Mikelic, A., Wright, S.: Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456, 19–51 (1994)

    MathSciNet  MATH  Google Scholar 

  • Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, Berlin (2010)

  • Broersen, K., Rousseau, F., Schymkowitz, J.: The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: oligomer size or conformation? Alzheimer’s Res. Ther. 2, 12 (2010)

    Article  Google Scholar 

  • Chiadò Piat, V., Piatnitski, A.: \(\Gamma \)-convergence approach to variational problems in perforated domains with Fourier boundary conditions. ESAIM COCV 16, 148–175 (2010)

  • Chiadò Piat, V., Nazarov, S.S., Piatnitski, A.L.: Steklov problems in perforated domains with a coefficient ofindefinite sign. Netw. Heterog. Media 7(1), 151–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  • Cioranescu, D., Paulin, J.S.J.: Homogenization of Reticulated Structures. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Clark, G.W., Showalter, R.E.: Two-scale convergence of a model for flow in a partially fissured medium. Electron. J. Differ. Equ. 1999(2), 1–20 (1999)

    MathSciNet  MATH  Google Scholar 

  • Conca, C.: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl. 64, 31–75 (1985)

    MathSciNet  MATH  Google Scholar 

  • Cruz, L., Urbanc, B., Buldyrev, S.V., Christie, R., Gómez-Isla, T., Havlin, S., McNamara, M., Stanley, H.E., Hyman, B.T.: Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 7612–7616 (1997)

    Article  Google Scholar 

  • Damlamian, A., Donato, P.: Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition? ESAIM COCV 8, 555–585 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Deaconu, M., Tanré, E.: Smoluchowski’s coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels. Ann. Sc. Norm. Super. Pisa. 29, 549–579 (2000)

    MATH  Google Scholar 

  • Drake, R.L.: A General Mathematical Survey of the Coagulation Equation. In: Topics in Current Aerosol Research (Part 2), Volume 3 of International Reviews in Aerosol Physics and Chemistry. Pergamon Press, Oxford (1972)

  • Edelstein-Keshet, L., Spiros, A.: Exploring the formation of Alzheimer’s disease senile plaques in silico. J. Theor. Biol. 216, 301–326 (2002)

    Article  Google Scholar 

  • Filbet, F., Laurençot, P.: Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation. Arch. Math. (Basel) 83(6), 558–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet, F., Laurençot, P.: Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25(6), 2004–2028 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Franchi, B., Tesi, M.C.T.: A qualitative model for aggregation-fragmentation and diffusion of \(\beta \)-amyloid in Alzheimer’s disease. In: Proceedings of the Meeting “Forty Years of Analysis in Torino, A Conference in Honor of Angelo Negro”, Rend. Semin. Mat. Univ. Politec. Torino, vol. 7, pp. 75–84 (2012)

  • Helal, M., Hingant, E., Pujo-Menjouet, L., Webb, G.F.: Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69(5), 1–29 (2013)

    MathSciNet  MATH  Google Scholar 

  • Hornung, U.: Miscible displacement in porous media influenced by mobile and immobile water. Rocky Mt. J. Math. 21, 645–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Hornung, U., Jäger, W.: Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equ. 92, 199–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Hornung, U.: Applications of the homogenization method to flow and transport in porous media. Summer school on flow and transport in porous media. Beijing, 8–26 August 1988. World Scientific, Singapore, pp. 167–222 (1992)

  • Karran, E., Mercken, M., De Strooper, B.: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011)

    Article  Google Scholar 

  • Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasi-linear equations of parabolic type. American Mathematical Society (1968)

  • Laurençot, P., Mischler, S.: Global existence for the discrete diffusive coagulation-fragmentation equations in \(L^1\). Rev. Mat. Iberoamericana 18, 731–745 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., De Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., Hyman, B.T.: Rapid appearance and local toxicity of amyloid-\(\beta \) plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724 (2008)

    Article  Google Scholar 

  • Mischler, S., Ricard, M.R.: Existence globale pour l’équation de Smoluchowski continue non homogéne et comportement asymptotique des solutions. C R Math. Acad. Sci. Paris 336(5), 407–412 (2003)

    Article  MathSciNet  Google Scholar 

  • Murphy, R.M., Pallitto, M.M.: Probing the kinetics of \(\beta \)-amyloid self-association. J. Struct. Biol. 130, 109–122 (2000)

    Article  Google Scholar 

  • Nandakumaran, A.K., Rajesh, M.: Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Proc. Indian Acad. Sci. 112(1), 195–207 (2002)

    MathSciNet  MATH  Google Scholar 

  • Nasica-Labouze, J., Mousseau, N.: Kinetics of amyloid aggregation: a study of the GNNQQNY prion sequence. PLoS Comput. Biol. 8(11), 1–12 (2012)

    Article  Google Scholar 

  • Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. Siam J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Nittka, R.: Inhomogeneous parabolic Neumann problems. Czechoslov. Math. J. 64, 703–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Papanicolaou, G.C., Varadhan, S.R.S.: Boundary Value Problems with Rapidly Oscillating Random Coefficients. Colloquia Mathematica Societatis János Bolyai, North-Holland (1982)

    MATH  Google Scholar 

  • Pellarin, R., Caflisch, A.: Interpreting the aggregation kinetics of amyloid peptides. J. Mol. Biol. 360, 882–892 (2006)

    Article  Google Scholar 

  • Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  • Raj, A., Kuceyeski, A., Weiner, M.: A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012)

    Article  Google Scholar 

  • Rothe, F.: Global solutions of reaction-diffusion systems. Volume 1072 of Lecture Notes in Mathematics. Springer, Berlin (1984)

  • Smoluchowski, M.: Versuch einer mathematischen theorie der koagulationskinetik kolloider lsungen. IZ Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  • Torquato, S.: Random Heterogeneous Haterials. Springer, New York (2002)

  • Wrzosek, D.: Existence of solutions for the discrete coagulation-fragmentation model with diffusion. Topol. Methods Nonlinear Anal. 9(2), 279–296 (1997)

    MathSciNet  MATH  Google Scholar 

  • Yao, S., Cherny, R.A., Bush, A.I., Masters, C.L., Barnham, K.J.: Characterizing bathocuproine self-association and subsequent binding to Alzheimer’s disease amyloid \(\beta \)-peptide by NMR. J. Pept. Sci. 10, 210–217 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

B.F. is supported by University of Bologna, funds for selected research topics, by GNAMPA of INdAM, Italy, and by MAnET Marie Curie Initial Training Network.

S.L. is grateful to GNFM for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Franchi.

Additional information

Communicated by Irene Fonseca.

Appendices

Appendix A

Lemma 7.1

The following estimate holds: if \(v\in \mathrm {Lip} (\Omega _{\epsilon })\), then

$$\begin{aligned} \Vert v \Vert ^2_{L^2(\Gamma _{\epsilon })} \le C_1 \, \bigg [ {\epsilon }^{-1} \displaystyle \int _{\Omega _{\epsilon }} \vert v \vert ^2 \, \mathrm{d}x+ \epsilon \displaystyle \int _{\Omega _{\epsilon }} \vert \nabla _x v \vert ^2 \, \mathrm{d}x \bigg ] \end{aligned}$$
(113)

where \(C_1\) is a constant which does not depend on \(\epsilon \).

The inequality (113) can be easily obtained from the standard trace theorem by means of a scaling argument (Allaire et al. 1996; Chiadò Piat and Piatnitski 2010; Chiadò Piat et al. 2012).

Lemma 7.2

Suppose that the domain \(\Omega _{\epsilon }\) is such that assumption (8) is satisfied. Then, there exists a family of linear continuous extension operators

$$\begin{aligned} P_{\epsilon }: W^{1,p}(\Omega _{\epsilon }) \rightarrow W^{1,p}(\Omega ) \end{aligned}$$

and a constant \(C >0\) independent of \(\epsilon \) such that

$$\begin{aligned} P_{\epsilon } v=v \; \; \; \text {in } \Omega _{\epsilon } \end{aligned}$$

and

$$\begin{aligned}&\int _{\Omega } \vert P_{\epsilon } v \vert ^{p} \mathrm{d}x \le C \int _{\Omega _{\epsilon }} \vert v \vert ^p \mathrm{d}x \;, \end{aligned}$$
(114)
$$\begin{aligned}&\int _{\Omega } \vert \nabla (P_{\epsilon } v) \vert ^{p} \mathrm{d}x \le C \int _{\Omega _{\epsilon }} \vert \nabla v \vert ^p \mathrm{d}x \end{aligned}$$
(115)

for each \(v \in W^{1,p}(\Omega _{\epsilon })\) and for any \(p \in (1, +\infty )\).

For the proof of this Lemma see, for instance, (Chiadò Piat and Piatnitski 2010).

As a consequence of the existence of extension operators, one can derive the Sobolev inequalities in \(W^{1,p}(\Omega _{\epsilon })\) with a constant independent of \(\epsilon \).

Lemma 7.3

(Anisotropic Sobolev inequalities in perforated domains)

  1. (i)

    For arbitrary \(v \in H^1 (0,T; L^2 (\Omega _{\epsilon })) \cap L^2 (0,T; H^1 (\Omega _{\epsilon }))\) and \(q_1\) and \(r_1\) satisfying the conditions

    $$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\displaystyle 1}{\displaystyle r_1}+ \frac{\displaystyle N}{\displaystyle 2 q_1}=\frac{\displaystyle N}{\displaystyle 4} \\ r_1 \in [2, \infty ], \; q_1 \in \left[ 2, \frac{2 N}{N-2}\right] \; \; \; \text {for} \; N>2\\ \end{array}\right. } \end{aligned}$$
    (116)

    the following estimate holds

    $$\begin{aligned} \Vert v \Vert _{L^{r_1} (0, T; L^{q_1} (\Omega _{\epsilon }))} \le c \, \Vert v \Vert _{Q_{\epsilon } (T)} \end{aligned}$$
    (117)

    where c is a positive constant independent of \(\epsilon \) and

    $$\begin{aligned} \Vert v \Vert ^{2}_{Q_{\epsilon } (T)} := \sup _{0 \le t \le T} \displaystyle \int _{\Omega _{\epsilon }} \vert v(t) \vert ^2 \, \mathrm{d}x+ \displaystyle \int _{0}^{T} \, \mathrm{d}t \displaystyle \int _{\Omega _{\epsilon }} \vert \nabla v(t) \vert ^2 \, \mathrm{d}x \end{aligned}$$
    (118)
  2. (ii)

    For arbitrary \(v \in H^1 (0,T; L^2 (\Omega _{\epsilon })) \cap L^2 (0,T; H^1 (\Omega _{\epsilon }))\) and \(q_2\) and \(r_2\) satisfying the conditions

    $$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\displaystyle 1}{\displaystyle r_2}+ \frac{\displaystyle (N-1)}{\displaystyle 2 q_2}=\frac{\displaystyle N}{\displaystyle 4} \\ r_2 \in [2, \infty ], \; q_2 \in \left[ 2, \frac{2 (N-1)}{(N-2)}\right] \; \; \; \text {for} \; N \ge 3\\ \end{array}\right. } \end{aligned}$$
    (119)

    the following estimate holds

    $$\begin{aligned} \Vert v \Vert _{L^{r_2} (0, T; L^{q_2} (\Gamma _{\epsilon }))} \le c \, {\epsilon }^{-\frac{N}{2}-\frac{(1-N)}{q_2}} \, \Vert v \Vert _{Q_{\epsilon } (T)} \end{aligned}$$
    (120)

    where c is a positive constant independent of \(\epsilon \) and the norm \(\Vert v \Vert _{Q_{\epsilon } (T)}\) is defined as in (118).

Proof

(i) The extension Lemma 7.2 ensures the well definiteness of a linear continuous extension operator \(P_{\epsilon }\) which satisfies (114) and (115). By the classical multiplicative Sobolev inequalities valid in \(\Omega \) (see Ladyzenskaja et al. 1968 and Nittka 2014), we have that

$$\begin{aligned} \Vert P_{\epsilon } v \Vert _{L^{r_1} (0, T; L^{q_1} (\Omega ))} \le c_1 \, \Vert P_{\epsilon } v \Vert _{Q (T)} \end{aligned}$$
(121)

where \(c_1 \ge 0\) depends only on \(\Omega \), \(r_1\), \(q_1\), with \(r_1\) and \(q_1\) satisfying the conditions (116) and

$$\begin{aligned} \Vert P_{\epsilon } v \Vert ^{2}_{Q (T)} := \sup _{0 \le t \le T} \displaystyle \int _{\Omega } \vert P_{\epsilon } v(t) \vert ^2 \, \mathrm{d}x+ \displaystyle \int _{0}^{T} \, \mathrm{d}t \displaystyle \int _{\Omega } \vert \nabla (P_{\epsilon } v(t)) \vert ^2 \, \mathrm{d}x \end{aligned}$$
(122)

By using (114), (115) and (121), we conclude that

$$\begin{aligned} \begin{aligned} \Vert v \Vert _{L^{r_1} (0, T; L^{q_1} (\Omega _{\epsilon }))}&\le C' \, \Vert P_{\epsilon } v \Vert _{L^{r_1} (0, T; L^{q_1} (\Omega ))} \\&\le C' \, c_1 \, \Vert P_{\epsilon } v \Vert _{Q (T)} \le C' \, c_1 \, C \, \Vert v \Vert _{Q_{\epsilon } (T)} \end{aligned} \end{aligned}$$
(123)

where \(c := C' \, c_1 \, C\) is independent of \(\epsilon \).

(ii) Let us rewrite the anisotropic Sobolev inequality valid on \(\partial \Omega \) (see Ladyzenskaja et al. 1968 and Nittka 2014):

$$\begin{aligned} \begin{aligned}&\bigg [ \displaystyle \int _{0}^{T} \, \mathrm{d}t \bigg [ \displaystyle \int _{\partial \Omega } \vert v(t) \vert ^{q_2} \, d\mathcal {H}^{N-1} \bigg ]^{\frac{r_2}{q_2}} \bigg ]^{\frac{1}{r_2}} \\&\le c_1 \; \bigg [ \sup _{0 \le t \le T} \displaystyle \int _{\Omega } \vert v(t) \vert ^2 \, \mathrm{d}y+ \displaystyle \int _{0}^{T} \, \mathrm{d}t \displaystyle \int _{\Omega } \vert \nabla v(t) \vert ^2 \, \mathrm{d}y \bigg ]^{1/2} \end{aligned} \end{aligned}$$
(124)

where \(c_1 \ge 0\) depends only on \(r_2\), \(q_2\) and on local properties of the surface \(\partial \Omega \) (which is assumed to be piecewise smooth) with \(r_2\) and \(q_2\) satisfying the conditions (119). By performing the change of variable \(y=\frac{\displaystyle x}{\displaystyle \epsilon }\), it is easy to obtain the corresponding re-scaled estimates:

$$\begin{aligned}&\epsilon ^{\frac{(1-N)}{q_2}} \, \bigg [ \displaystyle \int _{0}^{T} \, \mathrm{d}t \bigg [ \displaystyle \int _{\Gamma _{\epsilon }} \vert v(t) \vert ^{q_2} \, d\mathcal {H}^{N-1} \bigg ]^{\frac{r_2}{q_2}} \bigg ]^{\frac{1}{r_2}} \nonumber \\&\quad \le c_1 \, \epsilon ^{-\frac{N}{2}} \, \bigg [ \sup _{0 \le t \le T} \displaystyle \int _{\Omega _{\epsilon }} \vert v(t) \vert ^2 \, \mathrm{d}x+ \epsilon ^{2} \displaystyle \int _{0}^{T} \, \mathrm{d}t \displaystyle \int _{\Omega _{\epsilon }} \vert \nabla v(t) \vert ^2 \, \mathrm{d}x \bigg ]^{1/2} \end{aligned}$$
(125)
$$\begin{aligned}&\bigg [ \displaystyle \int _{0}^{T} \, \mathrm{d}t \bigg [ \displaystyle \int _{\Gamma _{\epsilon }} \vert v(t) \vert ^{q_2} \, d\mathcal {H}^{N-1} \bigg ]^{\frac{r_2}{q_2}} \bigg ]^{\frac{1}{r_2}} \nonumber \\&\quad \le c \, \epsilon ^{-\frac{N}{2}-\frac{(1-N)}{q_2}} \, \bigg [ \sup _{0 \le t \le T} \displaystyle \int _{\Omega _{\epsilon }} \vert v(t) \vert ^2 \, \mathrm{d}x+ \displaystyle \int _{0}^{T} \, \mathrm{d}t \displaystyle \int _{\Omega _{\epsilon }} \vert \nabla v(t) \vert ^2 \, \mathrm{d}x \bigg ]^{1/2} \end{aligned}$$
(126)

where c is a positive constant independent of \(\epsilon \). \(\square \)

Appendix B

Let us introduce some definitions and results on two-scale convergence from Allaire (1992), Allaire et al. (1996), Nguetseng (1989), slightly modified to allow for homogenization with a parameter (the time t) (Clark and Showalter 1999; Hornung 1992; Nandakumaran and Rajesh 2002).

Definition 7.1

A sequence of functions \(v^{\epsilon }\) in \(L^2 ([0,T] \times \Omega )\) two-scale converges to \(v_0 \in L^2 ([0,T] \times \Omega \times Y)\) if

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \int _0^T \int _{\Omega } v^{\epsilon }(t,x) \, \phi \bigg ( t,x,\frac{x}{\epsilon } \bigg ) \,\mathrm{d}t \,\mathrm{d}x= \int _0^T \int _{\Omega } \int _{Y} v_0 (t,x,y) \, \phi (t,x,y) \,\mathrm{d}t \, \mathrm{d}x\, \mathrm{d}y \end{aligned}$$
(127)

for all \(\phi \in C^1 ([0,T] \times \overline{\Omega }; C_{\#}^{\infty }(Y))\).

The notion of ‘two-scale convergence’ makes sense because of the next compactness theorem.

Theorem 7.1

If \(v^{\epsilon }\) is a bounded sequence in \(L^2 ([0,T] \times \Omega )\), then there exists a function \(v_0 (t,x,y)\) in \(L^2 ([0,T] \times \Omega \times Y)\) such that, up to a subsequence, \(v^{\epsilon }\) two-scale converges to \(v_0\).

The following theorem is useful in obtaining the limit of the product of two two-scale convergent sequences.

Theorem 7.2

Let \(v^{\epsilon }\) be a sequence of functions in \(L^2 ([0,T] \times \Omega )\) which two-scale converges to a limit \(v_0 \in L^2 ([0,T] \times \Omega \times Y)\). Suppose, furthermore, that

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \int _0^T \int _{\Omega } \vert v^{\epsilon }(t,x) \vert ^2 \, \mathrm{d}t \, \mathrm{d}x= \int _0^T \int _{\Omega } \int _{Y} \vert v_0 (t,x,y) \vert ^2 \, \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y \end{aligned}$$
(128)

Then, for any sequence \(w^{\epsilon }\) in \(L^2 ([0,T] \times \Omega )\) that two-scale converges to a limit \(w_0 \in L^2 ([0,T] \times \Omega \times Y)\), we have

$$\begin{aligned} \begin{aligned} \lim _{\epsilon \rightarrow 0} \int _0^T \int _{\Omega } v^{\epsilon }(t,x) \,&w^{\epsilon }(t,x) \, \phi \bigg ( t,x,\frac{x}{\epsilon } \bigg ) \,\mathrm{d}t \,\mathrm{d}x \\ {}&= \int _0^T \int _{\Omega } \int _{Y} v_0 (t,x,y) \, w_0 (t,x,y) \, \phi (t,x,y) \,\mathrm{d}t \, \mathrm{d}x\, \mathrm{d}y \end{aligned} \end{aligned}$$
(129)

for all \(\phi \in C^1 ([0,T] \times \overline{\Omega }; C_{\#}^{\infty }(Y))\).

The next theorems yield a characterization of the two-scale limit of the gradients of bounded sequences \(v^{\epsilon }\). This result is crucial for applications to homogenization problems.

We identify \(H^1(\Omega )=W^{1,2} (\Omega )\), where the Sobolev space \(W^{1,p} (\Omega )\) is defined by

$$\begin{aligned} W^{1,p} (\Omega )=\bigg \{ v \vert v \in L^p(\Omega ), \frac{\partial v}{\partial x_i} \in L^p(\Omega ), i=1, \ldots , N \bigg \} \end{aligned}$$

and we denote by \(H^1_{\#}(Y)\) the closure of \(C^{\infty }_{\#}(Y)\) for the \(H^1\)-norm.

Theorem 7.3

Let \(v^{\epsilon }\) be a bounded sequence in \(L^2 (0,T; H^1 (\Omega ))\) that converges weakly to a limit v(tx) in \(L^2 (0,T; H^1 (\Omega ))\). Then, \(v^{\epsilon }\) two-scale converges to v(tx), and there exists a function \(v_1 (t,x,y)\) in \(L^2 ([0,T] \times \Omega ; H^1_{\#} (Y)/\mathbb {R})\) such that, up to a subsequence, \(\nabla v^{\epsilon }\) two-scale converges to \(\nabla _x v(t,x)+\nabla _y v_1 (t,x,y)\).

Theorem 7.4

Let \(v^{\epsilon }\) and \(\epsilon \nabla v^{\epsilon }\) be two bounded sequences in \(L^2 ([0,T] \times \Omega )\). Then, there exists a function \(v_1 (t,x,y)\) in \(L^2 ([0,T] \times \Omega ; H^1_{\#} (Y)/\mathbb {R})\) such that, up to a subsequence, \(v^{\epsilon }\) and \(\epsilon \nabla v^{\epsilon }\) two-scale converge to \(v_1 (t,x,y)\) and \(\nabla _y v_1 (t,x,y)\), respectively.

The main result of two-scale convergence can be generalized to the case of sequences defined in \(L^2 ([0,T] \times \Gamma _{\epsilon })\).

Theorem 7.5

Let \(v^{\epsilon }\) be a sequence in \(L^2 ([0,T] \times \Gamma _{\epsilon })\) such that

$$\begin{aligned} \epsilon \, \int _0^T \int _{\Gamma _{\epsilon }} \vert v^{\epsilon }(t,x) \vert ^2 \, \mathrm{d}t \, \mathrm{d}\sigma _{\epsilon }(x) \le C \end{aligned}$$
(130)

where C is a positive constant, independent of \(\epsilon \). There exist a subsequence (still denoted by \(\epsilon \)) and a two-scale limit \(v_0(t,x,y) \in L^2([0,T] \times \Omega ; L^2(\Gamma ))\) such that \(v^{\epsilon }(t,x)\) two-scale converges to \(v_0(t,x,y)\) in the sense that

$$\begin{aligned}&\lim _{\epsilon \rightarrow 0} \, \epsilon \, \displaystyle \int _0^T \int _{\Gamma _{\epsilon }} v^{\epsilon }(t,x) \, \phi \bigg (t,x, \frac{x}{\epsilon } \bigg ) \, \mathrm{d}t \, \mathrm{d}\sigma _{\epsilon }(x)\nonumber \\&\quad = \displaystyle \int _0^T \int _{\Omega } \int _{\Gamma } v_0(t,x,y) \, \phi (t,x,y) \, \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}\sigma (y) \end{aligned}$$
(131)

for any function \(\phi \in C^1 ([0, T] \times \overline{\Omega }; C_{\#}^{\infty }(Y))\).

The proof of Theorem 7.5 is very similar to the usual two-scale convergence theorem (Allaire 1992). It relies on the following lemma (Allaire et al. 1996):

Lemma 7.4

Let \(B=C [\overline{\Omega }; C_{\#} (Y)]\) be the space of continuous functions \(\phi (x, y)\) on \(\overline{\Omega } \times Y\) which are Y-periodic in y. Then, B is a separable Banach space which is dense in \(L^2 (\Omega ; L^2 (\Gamma ))\), and such that any function \(\phi (x, y) \in B\) satisfies

$$\begin{aligned} \epsilon \, \displaystyle \int _{\Gamma _{\epsilon }} \bigg \vert \phi (x,\frac{x}{\epsilon } ) \bigg \vert ^2 \, \mathrm{d}\sigma _{\epsilon }(x) \le C \, \Vert \phi \Vert ^2_B, \end{aligned}$$
(132)

and

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \, \epsilon \, \int _{\Gamma _{\epsilon }} \bigg \vert \phi \bigg (x, \frac{x}{\epsilon } \bigg ) \bigg \vert ^2 \, \mathrm{d}\sigma _{\epsilon } (x) =\displaystyle \int _{\Omega } \int _{\Gamma } \vert \phi (x, y) \vert ^2 \, \mathrm{d}x \, \mathrm{d}\sigma (y). \end{aligned}$$
(133)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, B., Lorenzani, S. From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains. J Nonlinear Sci 26, 717–753 (2016). https://doi.org/10.1007/s00332-016-9288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9288-7

Keywords

Navigation