Skip to main content
Log in

Cultivation as slow evolutionary entanglement: comparative data on rate and sequence of domestication

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2012

Abstract

Recent studies have suggested that domestication was a slower evolutionary process than was previously thought. We address this issue by quantifying rates of phenotypic change in crops undergoing domestication, including five crops from the Near East (Triticum monococcum, T. dicoccum, Hordeum vulgare, Pisum sativum, Lens culinaris) and six crops from other regions (Oryza sativa, Pennisetum glaucum, Vigna radiata, Cucumis melo, Helianthus annus, Iva annua). We calculate rates using the metrics of darwin units and haldane units, which have been used in evolutionary biology, and apply this to data on non-shattering cereal spikelets and seed size. Rates are calculated by considering data over a 4,000-year period from archaeological sites in the region of origin, although we discuss the likelihood that a shorter period of domestication (1,000–2,000) years may be more appropriate for some crops, such as pulses. We report broadly comparable rates of change across all the crops and traits considered, and find that these are close to the averages and median values reported in various evolutionary biological studies. Nevertheless, there is still variation in rates between domesticates, such as melon seeds increasing at twice the rate of cereals, and between traits, such as non-shattering evolving faster than grain size. Such comparisons underline the utility of a quantitative approach to domestication rates, and the need to develop larger datasets for comparisons between crops and across regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Gopher A (2010a) Agricultural origins: centres and non-centres; a near eastern reappraisal. Crit Rev Plant Sci 29:317–328

    Article  Google Scholar 

  • Abbo S, Rachamim E, Zehavi Y, Zezak I, Lev-Yadun S, Gopher A (2010b) Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann Bot 107:1,399–1404

    Google Scholar 

  • Allaby RG (2010) Integrating the processes in the evolutionary system of domestication. J Exp Bot 61:935–944

    Article  Google Scholar 

  • Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci 105:13,982–13986

    Article  Google Scholar 

  • Allaby RG, Brown T, Fuller DQ (2010) A simulation of the effect of inbreeding on crop domestication genetics with comments on the integration of archaeobotany and genetics: a reply to Honne and Heun. Veget Hist Archaeobot 19:151–158

    Article  Google Scholar 

  • Asch DL, Asch NB (1985) Prehistoric plant cultivation in West-Central Illinois. In: Ford RI (ed) Prehistoric food production in North America. Anthropological Papers 75. Museum of Anthropology, University of Michigan, Ann Arbor, pp 149–204

    Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley. Mol Biol Evol 17:499–510

    Google Scholar 

  • Bellwood P (2005) First farmers: the origins of agricultural societies. Blackwell, Oxford

    Google Scholar 

  • Bischoff D, Reingruber A,Thissen L (2006) CANeW 14C databases and 14C charts. Upper Mesopotamia (SE Turkey, N Syria and N Iraq) 10,000-5000 cal BC. In the Radiocarbon Lab Köln databases. Accessed from the world wide web (1 March 2010): http://www.ufg.uni-koeln.de/radiocarbonlab/atabase/indexindex.html

  • Bogaard A, Charles M, Twiss KC, Fairbairn A, Yalman N, Filipović D, Demirergi CA (2009) Private parties and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, central Anatolia. Antiquity 83:649–668

    Google Scholar 

  • Bone E, Farres A (2001) Trends and rates of microevolution in plants. Genetica 112–113:165–182

    Article  Google Scholar 

  • Braadbart F, Wright PJ (2007) Changes in mass and dimensions of sunflower (Helianthus annuus L.) achenes and seeds due to carbonization. Econ Bot 61:137–163

    Article  Google Scholar 

  • Bronk Ramsey C (2005) OxCal progam v3.10. Available online from Oxford radiocarbon: http://www.rlaha.ox.ac.uk/O/oxcal.php

  • Childe VG (1935) New light on the most ancient East. Kegan & Paul, London

  • Colledge S (2001) Plant exploitation on Epipalaeolithic and early Neolithic sites in the Levant. BAR Int Ser 986. Archaeopress, Oxford

    Google Scholar 

  • Colledge S (2004) Reappraisal of the archaeobotanical evidence for the emergence and dispersal of the “founder crops”. In: Peltenburg EJ, Wasse A (eds) Neolithic revolution: new perspectives on southwest Asia in light of recent discoveries on Cyprus. Levant Supplementary Series. Oxbow Books, Oxford, pp 49–58

    Google Scholar 

  • Colledge S, Conolly J (2010) Reassessing the evidence for the cultivation of wild crops during the Younger Dryas at Tell Abu Hureyra, Syria. Env Archaeol 15:124–138

    Article  Google Scholar 

  • Edwards PC, Meadows J, Sayej G, Westaway M (2004) From the PPNA to the PPNB: new views from the southern Levant after excavations at Zahrat adh-Dhra‘2 in Jordan. Paléorient 30:21–60

    Article  Google Scholar 

  • Fairbairn A, Martinoli D, Butler A, Hillman G (2007) Wild plant seed storage at Neolithic Çatalhöyük East, Turkey. Veget Hist Archaeobot 16:467–479

    Article  Google Scholar 

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J Plant Sci 55:207–221

    Article  Google Scholar 

  • Fox GP, Kelly A, Poulsen D, Inkerman A, Henry R (2006) Selecting for increased barley grain size. J Cereal Sci 43:198–208

    Article  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–909

    Article  Google Scholar 

  • Fuller DQ (2008) Archaeological science in field training. In: Ucko P, Qin L, Hubert J (eds) From concepts of the past to practical strategies: the teaching of archaeological field techniques. Saffron Press, London, pp 183–205

    Google Scholar 

  • Fuller DQ, Allaby R (2009) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. In: Ostergaard L (ed) Fruit development and seed dispersal. Annual plant reviews 38. Wiley-Blackwell, Oxford, pp 238–295

    Chapter  Google Scholar 

  • Fuller DQ, Boivin N, Korisettar R (2007) Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81(313):755–778

    Google Scholar 

  • Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya LA, Sun G (2009) The domestication process and domestication rate in rice: spikelet bases from the Lower Yangzte. Science 323:1,607–1610

    Article  Google Scholar 

  • Fuller DQ, Allaby R, Stevens C (2010a) Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol 42:13–28

    Article  Google Scholar 

  • Fuller DQ, Sato YI, Castillo C, Qin L, Weisskopf AR, Kingwell-Banham EJ, Song J, Ahn SM, Van Etten J (2010b) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci 2:115–131

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J, Snape J (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1,046–1,056

    Article  Google Scholar 

  • Gingerich PD (1993) Quantification and comparison of evolutionary rates. Am J Sci 293A:453–478

    Article  Google Scholar 

  • Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. Genetica 112:127–144

    Article  Google Scholar 

  • Grant PR, Grant BR (1995) Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241–251

    Article  Google Scholar 

  • Gu XY, Kianian S, Hareland GA, Hoffer BL, Foley ME (2005) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110:1,108–118

    Article  Google Scholar 

  • Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–53

    Article  Google Scholar 

  • Haldorsen S, Akan H, Çelik B, Heun M (2011) The climate of the Younger Dryas as a boundary for Einkorn domestication. Veget Hist Archaeobot 20:305–318

    Google Scholar 

  • Harlan JR (1995) The living fields. Cambridge University Press, Cambridge

    Google Scholar 

  • Hendry AP, Kinnison MT (1999) The pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1,637–1,653

    Article  Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Article  Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1,312–1,314

    Article  Google Scholar 

  • Hillman GC, Davies MS (1990) Domestication rates in wild-type wheats and barley under primitive cultivation. Biol J Linn Soc 39:39–78

    Article  Google Scholar 

  • Hillman GC, Davies MS (1992) Domestication rate in wild wheats and barley under primitive cultivation: preliminary results and archaeological implications of field measurements of selection coefficient. In: Anderson PC (ed) Préhistoire de l’agriculture: nouvelles approches expérimentales et ethnographiques. Monographie du Centre de Recherches Archéologiques 6. Éditions du CNRS, Paris, pp 113–158

    Google Scholar 

  • Honne BI, Heun M (2009) On the domestication genetics of self fertilizing plants. Veget Hist Archaeobot 18:269–272

    Article  Google Scholar 

  • Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci 101:10,667–10,672

    Article  Google Scholar 

  • Kato J (1990) Heritability for grain size in rice estimated from parent-offspring correlation and selection response. Jap J Breed 40:313–320

    Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112–113:145–164

    Article  Google Scholar 

  • Kislev ME (1997) Early agriculture and paleoecology of Netiv Hagdud. In: Bar-Yosef O, Gopher A (eds) An early Neolithic village in the Jordan valley. Part I: the archaeology of Netiv Hagdud. Peabody Museum of Archaeology and Ethnology, Cambridge, pp 203–230

    Google Scholar 

  • Kislev ME, Weiss E, Hartmann A (2004) Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc Natl Acad Sci 101:2,692–2,695

    Article  Google Scholar 

  • Kozlowski SK, Aurenche O (2005) Territories, boundaries and cultures in the Near East. BAR Int Ser 1362. Archaeopress, Oxford

    Google Scholar 

  • Ladizinsky G (1993) Lentil domestication: on the quality of evidence and arguments. Econ Bot 47:60–64

    Article  Google Scholar 

  • Lucas L, Colledge S, Simmons A, Fuller DQ (2011) Crop introduction and accelerated island evolution: archaeobotanical evidence from ‘Ais Yiorkis and Pre-Pottery Neolithic Cyprus. Veget Hist Archaeobot. doi:10.1007/s00334-011-0323-1 [this volume]

  • Manning K, Pelling R, Higham T, Schwenniger J-L, Fuller DQ (2011) 4500-year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: new insights into an alternative cereal domestication pathway. J Archaeol Sci 38:312–322

    Article  Google Scholar 

  • Meadows J (2004) The earliest farmers? Archaeobotanical research at Pre-Pottery Neolithic A sites in Jordan. In: al-Khraysheh F (ed) Studies in the history and archaeology of Jordan VIII: archaeological and historical perspectives on society culture and identity. Department of Antiquities of Jordan, Amman, pp 119–128

    Google Scholar 

  • Pearson ES, Hartley HO (1976) Biometrika tables for statisticians. Biometrika Trust, Cambridge

    Google Scholar 

  • Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot (advanced access on-line: doi:10.1093/jxb/err206)

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  Google Scholar 

  • Purugganan MD, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65:171–183

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney C, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal. b.p. Radiocarbon 51:1,111–1,150

    Google Scholar 

  • Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 27:1,934–1,937

    Google Scholar 

  • Roopnarine PD (2003) Analysis of rates of morphologic evolution. Ann Rev Ecol Evol Syst 34:605–632

    Article  Google Scholar 

  • Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Res 100:125–138

    Article  Google Scholar 

  • Savard M, Nesbitt M, Jones MK (2006) The role of wild grasses in subsistence and sedentism: new evidence from the northern Fertile Crescent. World Archaeol 38:179–196

    Article  Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429

    Article  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1,023–1,028

    Article  Google Scholar 

  • Smith BD (1992) Rivers of change. Essays on early agriculture in Eastern North America. Smithsonian Institution, Washington

    Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1,886

    Article  Google Scholar 

  • Tanno K, Willcox G (2011) Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East. Veget Hist Archaeobot. doi:10.1007/s00334-011-0316-0 [this volume]

  • Thissen L, Cessford C, Newton M (2007) CANeW 14C databases and 14C charts. Central Anatolia and Cilicia 10,000–5000 cal b.c. In the Radiocarbon Lab Köln databases. http://www.ufg.unikoeln.de/radiocarbonlab/database/indexindex.html. Accessed 1 Mar 2010

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Van Zeist WA, Bakker-Heeres JH (1985) Archaeobotanical studies in the Levant 1. Neolithic sites in the Damascus Basin: Aswad, Ghoraifé, Ramad. Palaeohistoria 24:165–256

    Google Scholar 

  • Van Zeist WA, de Roller GJ (1992) The plant husbandry of aceramic Çayönü, SE Turkey. Palaeohistoria 33(34):65–96

    Google Scholar 

  • Van Zeist WA, de Roller GJ (1995) Plant remains from Aşıklı Höyük, a pre-pottery Neolithic site in central Anatolia. Veget Hist Archaeobot 4:179–185

    Article  Google Scholar 

  • Van Zeist WA, Smith PEL, Palfenier RM, Suwijn M, Casparie WA (1986) An archaeobotanical study of Ganj Dareh Tepe, Iran. Palaeohistoria 26:201–224

    Google Scholar 

  • Weeden NF (2007) Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the ‘Domestication Syndrome’ for Legumes? Ann Bot 100:1,017–1,025

    Article  Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1,608–1,610

    Article  Google Scholar 

  • Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J Archaeol Sci 31:145–150

    Article  Google Scholar 

  • Willcox G (2011) Searching for the origins of arable weeds in the Near East. Veget Hist Archaeobot. doi:10.1007/s00334-011-0307-1 [this volume]

  • Willcox G, Fornite S (1999) Impressions of wild cereal chaff in pisé from the 10th millennium uncal b.p. at Jerf et Ahmar and Mureybet: Northern Syria. Veget Hist Archaeobot 8:21–24

    Article  Google Scholar 

  • Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veget Hist Archaeobot 17:313–325

    Article  Google Scholar 

  • Willcox G, Buxo R, Herveux L (2009) Late Pleistocene and Early Holocene climate and the beginnings of cultivation in northern Syria. Holocene 19:151–158

    Article  Google Scholar 

  • Wollstonecroft M, Hroudova Z, Hillman GC, Fuller DQ (2011) Bolboschoenus glaucus, a new species in the flora of the ancient Near East. Veget Hist Archaeobot 20:459–470

    Article  Google Scholar 

  • Young BA (1991) Heritability of resistance to seed shattering in kleingrass. Crop Sci 31:1,156–1,158

    Article  Google Scholar 

  • Zhang LB, Zhu Q, Wu ZQ, Ross-Ibarra J, Gaut B, Ge S, Sang T (2009) Selection on grain shattering genes and rates of rice domestication. New Phytol 184:708–720

    Article  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We are thankful to the peer reviewers of this manuscript for their constructive comments and criticisms. Some raw metrical data was provided to DQF by George Willcox, and some data was compiled by Mervyn Jupe as part of a student project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Q. Fuller.

Additional information

Communicated by F. Bittmann.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00334-012-0347-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, D.Q., Asouti, E. & Purugganan, M.D. Cultivation as slow evolutionary entanglement: comparative data on rate and sequence of domestication. Veget Hist Archaeobot 21, 131–145 (2012). https://doi.org/10.1007/s00334-011-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-011-0329-8

Keywords

Navigation