Skip to main content
Log in

Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

  • Note
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral–symbiont relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B 275:2273–2282

    Article  CAS  Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5:111–116

    Article  Google Scholar 

  • Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawning of 105 coral species on the Great Barrier Reef. Mar Biol 90:379–394

    Article  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  PubMed  CAS  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  PubMed  CAS  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Lond, B 273:2305–2312

    Article  Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving W (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83

    Article  Google Scholar 

  • Buddemeier R, Fautin D (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–325

    Article  Google Scholar 

  • Chen CA, Wang JT, Fang LS, Yang YW (2005) Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  PubMed  CAS  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Goulet TL, Coffroth MA (2003) Stability of an octocoral-algal symbiosis over time and space. Mar Ecol Prog Ser 250:117–124

    Article  Google Scholar 

  • Goulet TL, Cook C, Goulet D (2005) Effect of elevated temperature and light levels on the photosynthesis of different host-symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498

    CAS  Google Scholar 

  • Goulet TL, LaJeunesse TC, Fabricius KE (2008) Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Mar Biol 154:795–804

    Article  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond, B 275:1359–1365

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocence-Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, related to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Google Scholar 

  • LaJeunesse TC, Lee S, Bush S, Bruno JF (2005) Persistence of non-Caribbean algal symbiont in Indo-Pacific mushroom corals released to Jamaica 35 years ago. Coral Reefs 24:157–159

    Article  Google Scholar 

  • Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857

    Article  PubMed  CAS  Google Scholar 

  • NOAAs Coral Reef Watch Program a http://coris.noaa.gov/metadata/records/html/bleaching_report_feb26_2002.html

  • NOAAs Coral Reef Watch Program b http://coralreefwatch.noaa.gov/satellite/current/sst_series_heron_cur.html

  • Rodriguez-Lanetty M, Chang SJ, Song JI (2003) Specificity of two temperate dinoflagellate-anthozoan associations from the north-western Pacific Ocean. Mar Biol 143:1193–1199

    Article  Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  CAS  Google Scholar 

  • Rowan R (2004) Thermal adaptations in reef coral symbionts. Nature 430:742

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  PubMed  CAS  Google Scholar 

  • Sampayo EM, Ridgeway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449

    Article  PubMed  CAS  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stat M, Morris E, Gates RD (2008a) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    Article  PubMed  CAS  Google Scholar 

  • Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA (2008b) Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef. Coral Reefs 27:763–772

    Article  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  PubMed  CAS  Google Scholar 

  • Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbiosis among western Atlantic brooding corals. Coral Reefs 25:515–519

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability of post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001a) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373

    Article  PubMed  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001b) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM-T, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond, B 268:1759–1767

    Article  Google Scholar 

  • van Oppen MJH, Mahiny AJ, Done TJ (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487

    Article  Google Scholar 

  • Zardoya R, Costas E, Lopez-Rodas V, Garrido-Pertierra A, Bautista JM (1995) Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J Mol Evol 51:26–40

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. Bui, K. Low, W. Fitt, G. Schmidt, and the staff at One Tree and Heron Island. This research was supported by an Australian Postgraduate Award and International Society for Reef Studies and The Ocean Conservancy Graduate Fellowship for Coral Reef Research to M. Stat, funded by an Australian Research Council grant (A10009205) to O. Hoegh-Guldberg and D. Carter, and an Australian Biological Resources Study grant 204-53 grant to D. Carter, by the National Science Foundation grant (OCE-0137007), and by the GEF–World Bank Coral Reef Targeted Research Project (www.gefcoral.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stat.

Additional information

Communicated by Biology Editor Dr. Clay Cook

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stat, M., Loh, W.K.W., LaJeunesse, T.C. et al. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713 (2009). https://doi.org/10.1007/s00338-009-0509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0509-5

Keywords

Navigation