Skip to main content

Advertisement

Log in

Connectivity, regime shifts and the resilience of coral reefs

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Connectivity of larvae among metapopulations in open marine systems can be a double-edged sword, allowing for the colonization and replenishment of both desirable and undesirable elements of interacting species-rich assemblages. This article studies the effect of recruitment by coral and macroalgae on the resilience of grazed reef ecosystems. In particular, we focus on how larval connectivity affects regime shifts between alternative assemblages that are dominated either by corals or by macroalgae. Using a model with bistability dynamics, we show that recruitment of coral larvae erodes the resilience of a macroalgae-dominated ecosystem when grazing is high, but has negligible effect when grazing is low. Conversely, recruitment by macroalgae erodes the resilience of a coral-dominated ecosystem when grazing is low, leading to a regime shift to macroalgae. Thus, spillover of coral recruits from highly protected areas will not restore coral cover or prevent flips to macroalgae in the surrounding seascape if grazing levels in these areas are depleted, but may be pivotal for re-building coral populations if grazing is high. Fishing restrictions and the re-introduction of herbivores should therefore be a prime conservation objective for preventing undesirable regime shifts. Connectivity by some components of coral reef assemblages (e.g., macroalgae, pathogens, crown-of-thorns starfish) may be detrimental to sustaining reefs, especially where overfishing and other drivers have eroded their resilience, making them more vulnerable to a regime shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    Article  CAS  PubMed  Google Scholar 

  • Botsford L, Hastings A, Gaines S (2001) Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol Lett 4:144–150

    Article  Google Scholar 

  • Box S, Mumby P (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149

    Article  Google Scholar 

  • Caley J, Carr M, Hixon M, Hughes TP, Jones JP, Menge B (1996) Recruitment and local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Article  Google Scholar 

  • Doherty P, Fowler T (1994) An empirical test of recruitment limitation in a coral reef fish. Science 263:935–939

    Article  PubMed  CAS  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling C (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35:557–581

    Article  Google Scholar 

  • Gardner TA, Cote I, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Golubitsky M, Schaeffer D (1985) Singularities and groups in bifurcation theory, vol 1. Springer-Verlag, New York

    Google Scholar 

  • Gotelli NJ (2001) Primer of ecology, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Guttal V, Jayaprakash C (2007) Impact of noise on bistable ecological systems. Ecol Model 201:420–428

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP (1996) Demographic approaches to community dynamics: A coral reef example. Ecology 77:2256–2260

    Article  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2264

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Bellwood D, Folke C, Steneck R, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    Article  PubMed  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  CAS  PubMed  Google Scholar 

  • Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:43–53

    Google Scholar 

  • Lipcius RN, Eggleston DB, Schreiber SJ, Seitz RD, Shen J, Sisson M, Stockhausen WT, Wang HV (2008) Importance of metapopulation connectivity to restocking and restoration of marine species. Rev Fish Sci 16:101–110

    Article  Google Scholar 

  • Mantyka CS, Bellwood DR (2007) Macroalgal grazing selectivity among herbivorous coral reef fishes. Mar Ecol Prog Ser 352:177–185

    Article  Google Scholar 

  • Maragos JE, Evans C, Holtus P (1985) Reef corals in Kaneohe Bay six years before and after termination of sewage discharges (Oahu, Hawaiian Archipelago). Proc 5th Int Coral Reef Congress 4:189–194

    Google Scholar 

  • May R (1977) Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269:471–477

    Article  Google Scholar 

  • Mumby P (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    Article  PubMed  Google Scholar 

  • Mumby P, Hastings A (2008) The impact of ecosystem connectivity on coral reef resilience. J Appl Ecol 45:854–862

    Article  Google Scholar 

  • Mumby P, Foster N, Fahy E (2005) Patch dynamics of coral reef macroalgae under chronic and acute disturbance. Coral Reefs 24:681–692

    Article  Google Scholar 

  • Mumby P, Hastings A, Edwards H (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    Article  CAS  PubMed  Google Scholar 

  • Norström AV, Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser (In Press)

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80

    Article  PubMed  Google Scholar 

  • Scheffer M, Carpenter S (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, van Nes E, Holmgren M, Hughes TP (2008) Pulse-driven loss of top-down control: The critical-rate hypothesis. Ecosystems 11:226–237

    Article  Google Scholar 

  • Wilkinson CR (ed) (2008) Status of the coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville

Download references

Acknowledgments

We thank Matthew Spencer and an anonymous reviewer for their helpful comments and suggestions on the manuscript. This work was supported by the Australian Research Council and a grant from the Packard Foundation to the Resilience Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby Elmhirst.

Additional information

Communicated by Biology Editor Dr. Mark McCormick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmhirst, T., Connolly, S.R. & Hughes, T.P. Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs 28, 949–957 (2009). https://doi.org/10.1007/s00338-009-0530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0530-8

Keywords

Navigation