Skip to main content

Advertisement

Log in

Species richness of motile cryptofauna across a gradient of reef framework erosion

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261–370 OTUs) than in live coral substrates (112–219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227–320 OTUs) and the lowest estimated richness of 47–115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abele L, Patton WK (1976) The size of coral heads and the community biology of associated decapod crustaceans. J Biogeogr 3:35–47

    Article  Google Scholar 

  • Bailey-Brock JH, Brock RE, Kam A, Fukunaga A, Akiyama A (2007) Anthropogenic disturbance on shallow cryptofaunal communities in a marine life conservation district on Oahu, Hawai’i. Int Rev Hydrobiol 92:291–300

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Bakus GJ (1966) Some relationships of fishes to benthic organisms on coral reefs. Nature 210:280–284

    Article  Google Scholar 

  • Beyer HL (2004) Hawth’s Analysis Tools for ArcGIS. Available at http://www.spatialecology.com/htools

  • Brander KM, McLeod AAQR, Humphreys WF (1971) Comparison of species diversity and ecology of reef-living invertebrates on Aldabra atoll and at Watamu, Kenya. Symp Zool Soc Lond 28:391–431

    Google Scholar 

  • Bruce AJ (1976) Shrimps and prawns of coral reefs, with special reference to commensalism. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. Academic Press, New York, pp 37–94

    Google Scholar 

  • Caley MJ, Buckley KA, Jones G (2001) Separating ecological effects of habitat fragmentation, degradation, and loss on coral commensals. Ecology 82:3435–3448

    Article  Google Scholar 

  • Choi DR, Ginsburg RN (1983) Distribution of coelobites (cavity-dwellers) in coral rubble across the Florida Reef Tract. Coral Reefs 2:165–172

    Article  Google Scholar 

  • Coles SL (1980) Species diversity of decapods associated with living and dead reef coral Pocillopora meandrina. Mar Ecol Prog Ser 2:281–291

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. http://purl.oclc.org/estimates

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191

    Article  Google Scholar 

  • Enochs IC, Hockensmith G (2009) Effects of coral mortality on the community composition of cryptic metazoans associated with Pocillopora damicornis. Proc 11th Int Coral Reef Symp 26:1368–1372

    Google Scholar 

  • Enochs IC, Toth LT, Brandtneris VW, Afflerbach JC, Manello DP (2011) Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar Ecol Prog Ser 438:105–118

    Article  Google Scholar 

  • Glynn PW (1973) Acanthaster: Effect on coral reef growth in Panamá. Science 180:504–506

    Article  PubMed  CAS  Google Scholar 

  • Glynn PW (1980) Defense by symbiotic Crustacea of host corals elicited by chemical cues from predator. Oecologia 47:287–290

    Article  Google Scholar 

  • Glynn PW (1983) Increased survivorship in corals harboring crustacean symbionts. Mar Biol Lett 4:105–111

    Google Scholar 

  • Glynn PW (1990) Coral mortality and disturbance to coral reefs in the eastern tropical Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Nino-Southern Oscillation. Elsevier, Amsterdam, pp 55–126

    Chapter  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 68–98

    Chapter  Google Scholar 

  • Glynn PW (2006) Fish utilization of simulated coral reef frameworks versus eroded rubble substrates off Panama, eastern Pacific. Proc 10th Int Coral Reef Symp 1:250–256

    Google Scholar 

  • Glynn PW, Maté JM (1997) Field guide to the Pacific coral reefs of Panamá. Proc 8th Int Coral Reef Symp 1:145–166

  • Glynn PW, Maté JM, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panamá and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  PubMed  CAS  Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA (1971) Forest environments in tropical life zones. Pergamon Press, Oxford

    Google Scholar 

  • Hutchings PA (1981) Polychaete recruitment onto dead coral substrates at Lizard Island, Great Barrier Reef, Australia. Bull Mar Sci 31:410–423

    Google Scholar 

  • Idjadi JA, Edmunds PJ (2006) Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar Ecol Prog Ser 319:117–127

    Article  Google Scholar 

  • Jackson JBC, Winston JE (1982) Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J Exp Mar Biol Ecol 57:135–147

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Kirsteuer E (1969) Quantitative and qualitative aspects of the nemertean fauna in tropical coral reefs. Proc 1st Int Symp Coral Reefs 1:363-371

    Google Scholar 

  • Klumpp DW, McKinnon AD, Mundy CN (1988) Motile cryptofauna of a coral reef: abundance, distribution and trophic potential. Mar Ecol Prog Ser 45:95–108

    Article  Google Scholar 

  • Knudsen JW (1967) Trapezia and Tetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pac Sci 21:51–57

    Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comp Geosci 32:1259–1269

    Article  Google Scholar 

  • Kohn AJ (1983) Microhabitat factors affecting abundance and diversity of Conus on coral reefs. Oecologia 60:293–301

    Article  Google Scholar 

  • Kohn AJ, Leviten PJ (1976) Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25:119–210

    Article  Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals: a review of mechanisms and effects. In: Dubinsky Z (ed) Coral reefs, Ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 209–252

    Google Scholar 

  • Lewis JB, Snelgrove PVR (1990) Corallum morphology and composition of crustracean cryptofauna of the hermatypic coral Madracis mirabilis. Mar Biol 106:267–272

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105:10450–10455

    Article  PubMed  CAS  Google Scholar 

  • McClanahan TR (1990) Kenyan coral reef-associated gastropod assemblages: distribution and diversity patterns. Coral Reefs 9:63–74

    Article  Google Scholar 

  • McCloskey LR (1970) The dynamics of the community associated with a marine scleractinian coral. Int Rev Gesamten Hydrobiol Hydrogr 55:13–81

    Article  Google Scholar 

  • Monod J (1950) La technique de culture continue, théorie et applications. Ann Inst Pasteur 79:390–410

    CAS  Google Scholar 

  • Moran DP, Reaka ML (1988) Bioerosion and availability of shelter for benthic reef organisms. Mar Ecol Prog Ser 44:249–263

    Article  Google Scholar 

  • Moran DP, Reaka ML (1991) Effects of disturbance: disruption and enhancement of coral reef cryptofaunal populations by hurricanes. Coral Reefs 9:215–224

    Article  Google Scholar 

  • Palumbi SR, Jackson JBC (1982) Ecology of cryptic coral reef communities. II. Recovery from small disturbance events by encrusting bryozoa: the influence of “host” species and lesion size. J Exp Mar Biol Ecol 64:103–115

    Article  Google Scholar 

  • Patton WK (1974) Community structure among the animals inhabiting the coral Pocillopora damicornis at Heron Island, Australia. In: Vernberg W (ed) Symbiosis in the sea. Univ South Carolina Press, Columbia, pp 219–243

    Google Scholar 

  • Patton WK (1994) Distribution and ecology of animals associated with branching corals (Acropora spp.) from the Great Barrier Reef, Australia. Bull Mar Sci 55:193–211

    Google Scholar 

  • Peyrot-Clausade M (1974) Ecological study of coral reef cryptobiotic communities: an analysis of the polychaete cryptofauna. Proc 2nd Int Coral Reef Symp 1:269–284

    Google Scholar 

  • Peyrot-Clausade M (1977) Settlement of an artificial biota by coral reef cryptofauna.. Proc 3rd Int Coral Reef Symp 1:101–103

  • Peyrot-Clausade M (1980) Motile cryptofauna of Tuléar reef flats. Mar Biol 59:43–47

    Article  Google Scholar 

  • Peyrot-Clausade M (1981) Motile cryptofauna of Tuléar Great Reef outer slope: Brachyura and Anomura distributions. Proc 4th Int Coral Reef Symp 2:745–754

    Google Scholar 

  • Preston NP, Doherty PJ (1994) Cross-shelf patterns in the community structure of coral-dwelling Crustacea in the central region of the Great Barrier Reef. II. Cryptofauna. Mar Ecol Prog Ser 104:27–38

    Article  Google Scholar 

  • Ratkowsky DA (1983) Nonlinear regression modeling: a unified practical approach. Marcel Dekker, New York

    Google Scholar 

  • Ratkowsky DA (1990) Handbook of nonlinear regression models. Marcel Dekker, New York

    Google Scholar 

  • Reaka ML (1985) Interactions between fishes and motile benthic invertebrates on reefs: the significance of motility vs. defensive adaptations. Proc 5th Int Coral Reef Congr, Tahiti 5:439–444

    Google Scholar 

  • Reaka-Kudla ML (1997) The global biodiversity of coral reefs. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: Understanding and protecting our biological resources. Joseph Henry Press, Washington DC, pp 83–108

    Google Scholar 

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  PubMed  CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91

    Article  Google Scholar 

  • Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC (2004) Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23:413–422

    Article  Google Scholar 

  • Takada Y, Abe O, Shibuno T (2007) Colonization patterns of mobile cryptic animals into interstices of coral rubble. Mar Ecol Prog Ser 343:35–44

    Article  Google Scholar 

  • Takada Y, Abe O, Shibuno T (2008) Cryptic assemblages in coral-rubble interstices along a terrestrial-sediment gradient. Coral Reefs 27:665–675

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Valles H, Kramer DL, Hunte W (2006) A standard unit for monitoring recruitment of fishes to coral reef rubble. J Exp Mar Biol Ecol 336:171–183

    Article  Google Scholar 

  • van Duyl FC, Scheffers SR, Thomas FIM, Driscoll M (2006) The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities. Coral Reefs 25:23–36

    Article  Google Scholar 

  • Vivien ML (1973) Contribution a la connaissance de l’éthologie alimentaire de l’ichtyofaune du platier interne des récifs coralliens de Tuléar (Madagascar). Tethys Suppl 5:221–308

    Google Scholar 

  • Vytopil E, Willis BL (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Math 18:293–296

    Google Scholar 

  • Wulff JL, Buss LW (1979) Do sponges help hold coral reefs together? Nature 281:474–475

    Article  Google Scholar 

  • Zimmerman TL, Martin JW (2004) Artificial reef matrix structures (ARMS): an inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb Res 16:59–64

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the knowledge and advice of P. Glynn, the field support of V. Brandtneris and L. Toth, the identifications of A. Anker, A. Baeza, R. Brusca, Y. Camacho Garcia, G. Coan, J. Garcia-Gomez, G. Hendler, R. Lemaitre, H. Lessios, J. Llopiz, G. Paulay, L. Harris, A. Schulze, E. Schwabe, J. Thomas, and P. Valentich-Scott, as well as the laboratory assistance of J. Afflerbach, I. Chambers, A. Goodson, A. Gracie, D. Graham, A. Jung, J. Kelly, N. Kraft, L. O’Neill, A. Mallozzi, A. Pflaumer, and S. Thompson. A. Bakun, P. Glynn, C. Langdon, D. Lirman, and B. Riegl provided manuscript advice. Financial support for this project was provided by the American Museum of Natural History Lerner-Gray Fund and a National Science Foundation grant to Peter W. Glynn, #OCE-0526361. Collection of specimens was approved by the Autoridad Nacional del Ambiente (ANAM). Two anonymous reviewers and topic editor H. Sweatman greatly improved the manuscript. M. Reaka deserves special acknowledgement for helping us understand the myriad of factors responsible for our findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Enochs.

Additional information

Communicated by Biology Editor Dr. Hugh Sweatman

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 2770 kb)

Supplementary material 2 (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enochs, I.C., Manzello, D.P. Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31, 653–661 (2012). https://doi.org/10.1007/s00338-012-0886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0886-z

Keywords

Navigation