Skip to main content

Advertisement

Log in

Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Despite rapidly rising sea surface temperatures and recurrent positive temperature anomalies, corals in the Gulf of Aqaba (GoA) rarely experience thermal bleaching. Elsewhere, mass coral bleaching has been observed in corals when the water temperature exceeds 1–2 °C above the local maximum monthly mean (MMM). This threshold value or “bleaching rule” has been used to create predictive models of bleaching from satellite sea surface temperature observations, namely the “degree heating week” index. This study aimed to characterize the physiological changes of dominant reef building corals from the GoA in response to a temperature and light stress gradient. Coral collection and experiments began after a period of 14 consecutive days above MMM in the field. Stylophora pistillata showed negligible changes in symbiont and host physiology parameters after accumulating up to 9.4 degree heating weeks during peak summer temperatures, for which the index predicts widespread bleaching and some mortality. This result demonstrates acute thermal tolerance in S. pistillata from the GoA and deviation from the bleaching rule. In a second experiment after 4 weeks at 4 °C above peak summer temperatures, S. pistillata and Acropora eurystoma in the high-light treatment visibly paled and suffered greater midday and afternoon photoinhibition compared to corals under low-light conditions (35% of high-light treatment). However, light, not temperature (alone or in synergy with light), was the dominant factor in causing paling and the effective quantum yield of corals at 4 °C above ambient was indistinguishable from those in the ambient control. This result highlights the exceptional, atypical thermal tolerance of dominant GoA branching corals. Concomitantly, it validates the efficacy of protecting GoA reefs from local stressors if they are to serve as a coral refuge in the face of global sea temperature rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basic for coral resilience to climate change. Proc Natl Acad Sci USA 110:1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18:219–228

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A Mol Integr Physiol 137:547–555

    Article  PubMed  Google Scholar 

  • Borell EM, Pettay DT, Steinke M, Warner M, Fine M (2016) Symbiosis-specific changes in dimethylsulphoniopropionate concentrations in Stylophora pistillata along a depth gradient. Coral Reefs 35:1383–1392

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Brown BE, Dunn RP, Ambarsari I, Le Tissier MDA, Satapoomin U (1999a) Seasonal fluctuations in environmental factors and variation in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar Ecol Prog Ser 191:53–69

    Article  Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999b) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8:e59596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dishon G, Dubinsky Z, Fine M, Iluz D (2012) Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Israel Journal of Plant Sciences 60:265–275

    Article  Google Scholar 

  • Donner SD, Heron SF, Skirving WJ (2009) Future scenarios: a review of modeling efforts to predict the future of coral reefs in an era of climate change. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Berlin, Heidelberg, pp 159–173

    Chapter  Google Scholar 

  • Eakin C, Morgan J, Heron S, Smith T, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner A, Bunkley-Williams L, Cameron A, Causey B, Chiappone M, Christensen T, Crabbe M, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo D, Gilliam D, Ginsburg R, Gore S, Guzman H, Hendee J, Hernandez-Delgado E, Husain E, Jeffrey C, Jones R, Jordan-Dahlgren E, Kaufman L, Kline D, Kramer P, Lang J, Lirman D, Mallela J, Manfrino C, Marechal J, Marks K, Mihaly J, Miller W, Mueller E, Muller E, Toro C, Oxenford H, Ponce-Taylor D, Quinn N, Ritchie K, Rodriguez S, Ramirez A, Romano S, Samhouri J, Sanchez J, Schmahl G, Shank B, Skirving W, Steiner S, Villamizar E, Walsh S, Walter C, Weil E, Williams E, Roberson K, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5:e13969

    Article  PubMed  PubMed Central  Google Scholar 

  • Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Chang Biol 12:3640–3647

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao LM, Koike K (2014) Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (Symbiodinium) from corals. PLoS One 9:e114321

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill R, Ralph PJ (2005) Diel and seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct Plant Biol 32:549–559

    Article  Google Scholar 

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Bio Ecol 322:83–92

    Article  CAS  Google Scholar 

  • Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PJ (2004) Loss of functional photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynth Res 82:59–72

    Article  CAS  PubMed  Google Scholar 

  • Holmes G (2008) Estimating three-dimensional surface areas on coral reefs. J Exp Mar Bio Ecol 365:67–73

    Article  Google Scholar 

  • Horwitz R, Fine M (2014) High CO2 detrimentally affects tissue regeneration of Red Sea corals. Coral Reefs 33:819–829

    Article  Google Scholar 

  • Hume BCC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in coral of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

  • Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Nat Acad Sci U S A 113:4416–4421

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll–protein complexes to different photon-flux densities. Mar Biol 130:23–33

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R Soc Open Sci 4:170038

    Article  PubMed  PubMed Central  Google Scholar 

  • Lajeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 406–419

    Google Scholar 

  • Lesser M, Shick J (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida. Primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos (Washington DC) 84:137–141

    Google Scholar 

  • Liu G, Strong AE, Skirving W, Arzayus LF (2006) Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. Proc 10th Int Coral Reef Symp 1:1783–1793

  • Liu G, Matrosova L, Penland C, Gledhill D, Eakin C, Webb R, Christensen T, Heron S, Morgan J, Skirving W (2008) NOAA Coral Reef Watch coral bleaching outlook system. Proc 11th Int Coral Reef Symp 1:956–960

  • Loya Y (1976) The Red Sea coral Stylophora pistillata is an r strategist. Nature 259:478–480

    Article  Google Scholar 

  • Loya Y (2004) The coral reefs of Eilat — past, present and future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, pp 1–34

    Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Maina J, Venus V, McClanahan M, Ateweberhan M (2008) Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol Model 212:180–199

    Article  Google Scholar 

  • McClanahan T, Ateweberhan M, Muhando C, Maina J, Mohammed M (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77:503–525

    Article  Google Scholar 

  • Montgomery RS, Strong AE (1994) Coral bleaching threatens oceans, life. Eos (Washington DC) 75:145–147

    Google Scholar 

  • Mumby P, Chisholm J, Edwards A, Andrefouet S, Jaubert J (2001) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Mar Ecol Prog Ser 222:209–216

    Article  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • NOAA (2016) El Niño prolongs longest global coral bleaching event. http://www.noaa.gov/media-release/el-ni-o-prolongs-longest-global-coral-bleaching-event

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Parkinson JE, Banaszak AT, Altman NS, LaJeunesse TC, Baums IB (2015) Intraspecific diversity among partners drives functional variation in coral symbioses. Sci Rep 5:15667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontasch S, Fisher PL, Krueger T, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK (2017) Photoacclimatory and photoprotective responses to cold versus heat stress in high latitude reef corals. J Phycol 53:308–321

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LJ, Grottoli AG, Lesser MP (2008) Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J Exp Biol 211:2502

    Article  PubMed  Google Scholar 

  • Sampayo EM, Ridgway T, Franceschinis L, Roff G, Hoegh-Guldberg O, Dove S (2016) Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci Rep 6:36271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra CR (2014) Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS One 9:e103179

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawall Y, Al-Sofyani A, Hohn S, Banguera-Hinestroza E, Voolstra CR, Wahl M (2015) Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci Rep 5:8940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrameyer V, Kramer W, Hill R, Jeans J, Larkum AWD, Bischof K, Campbell DA, Ralph PJ (2016) Under high light stress two Indo-Pacific coral species display differential photodamage and photorepair dynamics. Mar Biol 163:1–13

    Article  CAS  Google Scholar 

  • Shaked Y, Genin A (2014) The Israel national monitoring program in the northern Gulf of Aqaba. Scientific report. Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel

  • Sorek M, Levy O (2012) The effect of temperature compensation on the circadian rhythmicity of photosynthesis in Symbiodinium, coral-symbiotic alga. Sci Rep 2:536

    Article  PubMed  PubMed Central  Google Scholar 

  • Stambler N (2006) Light and picophytoplankton in the Gulf of Eilat (Aqaba). J Geophys Res Oceans 111:C11009

    Article  Google Scholar 

  • Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA (2009) Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28:709–713

    Article  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Bio Ecol 153:63–74

    Article  Google Scholar 

  • Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR (2013) Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol 161:477–485

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci U S A 105:4203–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veal CJ, Carmi M, Dishon G, Sharon Y, Michael K, Tchernov D, Hoegh-Guldberg O, Fine M (2010) Shallow-water wave lensing in coral reefs: a physical and biological case study. J Exp Biol 213:4304

    Article  PubMed  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96:8007–8012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington GM, Glynn PW, Strong AE, Navarrete SA, Wieters E, Hubbard D (2001) Crisis on coral reefs linked to climate change. Eos (Washington DC) 82:1–5

    Google Scholar 

  • Winters G, Loya Y, Röttgers R, Beer S (2003) Photoinhibition in shallow-water colonies of the coral Stylophora pistillata as measured in situ. Limnol Oceanogr 48:1388–1393

    Article  Google Scholar 

  • Yeemin T, Pengsakun S, Yucharoen M, Klinthong W, Sangmanee K, Sutthacheep M (2013) Long-term decline in Acropora species at Kut Island, Thailand, in relation to coral bleaching events. Marine Biodiversity 43:23–29

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded in part by an Israel Science Foundation grant to MF. We thank Prof. Amatzia Genin and the Israeli National Monitoring Program for providing the field sea temperature data. We also thank the IUI staff for technical assistance and the Crystal Vision team for their support with the Red Sea Simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Bellworthy.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellworthy, J., Fine, M. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light. Coral Reefs 36, 1071–1082 (2017). https://doi.org/10.1007/s00338-017-1598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1598-1

Keywords

Navigation