Skip to main content
Log in

Copper nanoparticles encapsulated in multi-shell carbon cages

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles are attracting increasing interest because of their high potential for a great number of practical applications, such as optical and electronic devices, nanoscale storage, and delivery systems. Using Cu-phthalocyanine as precursor material, we have synthesized multi-shell graphitic carbon nanospheres without and with metal encapsulation, depending on the pyrolysis conditions. The encapsulated elemental copper nanocrystals achieved using that route were of the order of 50 nm in size. The particles were characterized in detail by high-resolution transmission electron microscopy (HRTEM) and by energy filtering microscopy (EFTEM). The concentric graphitic carbon shells of the as-grown particles were clearly discernable. After in situ high-temperature annealing, an increase in the degree of order was observed. Under high-voltage electron irradiation and heating, a melting point reduction of the enclosed nanosized copper of more than 200 K could be detected, as compared to the melting point 1083 °C of bulk copper. Time-resolved imaging revealed the displacement of the melting copper by migration through the carbon shells, leaving intact carbon cages with a central hole. At intermediate stages of this process the transformation into a hexagonal morphology of the copper nanocrystals was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Banhart, N. Grobert, M. Terrones, J.C. Charlier, P.M. Ajayan: Intern. J. Mod. Phys. B 15, 4037 (2001)

    Article  ADS  Google Scholar 

  2. S. Subramoney: Adv. Mater. 10, 1157 (1998)

    Article  Google Scholar 

  3. M.E. McHenry, Y. Nakamura, S. Kirkpatrick, F. Johnson, S. Curtin, M. DeGraef, N.T. Nuhfer, S.A. Majetich, E.M. Brunsman: In Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington, New York 1994) p. 1463

  4. Y. Saito: Carbon 33, 979 (1995)

    Article  ADS  Google Scholar 

  5. T.H. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien: Science 261, 1316 (1993)

    Article  ADS  Google Scholar 

  6. N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton, P. Redlich, M. Rühle, R. Escudero, F. Morales: Appl. Phys. Lett. 75, 3363 (1999)

    Article  ADS  Google Scholar 

  7. X. Xu, G. Friedman, K.D. Humfeld, S.A. Majetich, S.A. Asher: Adv. Mater. 13, 1681 (2001)

    Article  Google Scholar 

  8. Z. Bao, L. Chen, M. Weldon, E. Chandross, O. Cherniavskaya, Y. Dai, J.B.H. Tok: Chem. Mater. 14, 24 (2002)

    Article  Google Scholar 

  9. Y. Xia, B. Gates, Y. Yin, Y. Lu: Adv. Mater. 12, 693 (2000)

    Article  Google Scholar 

  10. F. Caruso: Adv. Mater. 13, 11 (2001)

    Article  Google Scholar 

  11. S. Seraphin, D. Zhou, J. Jiao: J. Appl. Phys. 80, 2097 (1996)

    Article  ADS  Google Scholar 

  12. R.S. Ruoff, D.C. Lorents, B.C. Chan, R. Malhotra, S. Subramoney: Science 259, 346 (1993)

    Article  ADS  Google Scholar 

  13. S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loutfy: Appl. Phys. Lett. 63, 2073 (1993)

    Article  ADS  Google Scholar 

  14. B. Diggs, A. Zhou, C. Silva, S. Kirkpatrick, N.T. Nuhfer, M.E. McHenry, D. Petasis, S.A. Majetich, B. Brunett, S.W. Staley: J. Appl. Phys. 75, 5879 (1994)

    Article  ADS  Google Scholar 

  15. D. Zhou, S. Seraphin, J.C. Withers: Chem. Phys. Lett. 234, 233 (1995)

    Article  ADS  Google Scholar 

  16. J.P. Hare, W.K. Hsu, H.W. Kroto, A. Lappas, K. Prassides, M. Terrones, D.R.M. Walton: Chem. Mater. 8, 6 (1996)

    Article  ADS  Google Scholar 

  17. M.E. McHenry, S.A. Majetich, J.O. Artmann, M. DeGraef, S.W. Staley: Phys. Rev. B 49, 11358 (1994)

    Article  ADS  Google Scholar 

  18. E.M. Brunsman, R. Sutton, E. Bortz, S. Kirkpatrick, K. Midelfort, J. Williams, P. Smith, M.E. McHenry, S.A. Majetich, J.O. Artman, M. De Graef, S.W. Staley: J. Appl. Phys. 75, 5882 (1994)

    Article  ADS  Google Scholar 

  19. J. Jiao, S. Seraphin, X. Wang, J.C. Withers: J. Appl. Phys. 80, 103 (1996)

    Article  ADS  Google Scholar 

  20. Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina: J. Appl. Phys. 75, 134 (1994)

    Article  ADS  Google Scholar 

  21. X.Q. Zhao, Y. Liang, Z.Q. Hu, B.X. Liu: J. Appl. Phys. 80, 5857 (1996)

    Article  ADS  Google Scholar 

  22. D. Ugarte: Chem. Phys. Lett. 209, 99 (1993)

    Article  ADS  Google Scholar 

  23. F. Banhart, P. Redlich, P.M. Ajayan: Chem. Phys. Lett. 292, 554 (1998)

    Article  ADS  Google Scholar 

  24. F. Banhart, J.C. Charlier, P.M. Ajayan: Phys. Rev. Lett. 84, 686 (2000)

    Article  ADS  Google Scholar 

  25. 2nd edn. (Wolfe, UK 1992)

  26. J. Ma, N.M. Rodriguez, M.A. Vannice, R.T.K. Baker: J. Catalysis 183, 32 (1999)

    Article  Google Scholar 

  27. G.G. Jernigan, G.A. Somorjai: J. Catalysis 147, 567 (1994)

    Article  Google Scholar 

  28. C. Guerret-Plécourt, Y. Le Bouar, A. Loiseau, H. Pascard: Nature 372, 761 (1994)

    Article  ADS  Google Scholar 

  29. X. Lin, X.K. Wang, V.P. Dravid, R.P.H. Chang, J.B. Ketterson: Appl. Phys. Lett. 64, 181 (1994)

    Article  ADS  Google Scholar 

  30. A.K. Schaper, H. Hou, A. Greiner, F. Phillipp: in preparation

  31. H. Hou, A.K. Schaper, F. Weller, A. Greiner: Chem. Mater. 14, 3990 (2002)

    Article  Google Scholar 

  32. Z.C. Kang, Z.L. Wang: Phil. Mag. B 73, 905 (1996)

    Article  ADS  Google Scholar 

  33. Z.L. Wang, Z.C. Kang: Carbon 35, 419 (1997)

    Article  Google Scholar 

  34. P. Serp, R. Feurer, P. Kalck, Y. Kihn, J.L. Faria, J.L. Figueiredo: Carbon 39, 615 (2001)

    Article  Google Scholar 

  35. D. Ugarte: Carbon 33, 989 (1995)

    Article  Google Scholar 

  36. M.S. Zwanger, F. Banhart: Phil. Mag. B 72, 149 (1995)

    Article  ADS  Google Scholar 

  37. F. Banhart, T. Füller, P. Redlich, P.M. Ajayan: Chem. Phys. Lett. 269, 349 (1997)

    Article  ADS  Google Scholar 

  38. A. Kelly, G.W. Groves: Crystallography of Crystal Defects (Longman, London 1970)

  39. C. Mohr, M. Dubiel, H. Hofmeister: J. Phys. Condens. Matter 13, 525 (2001)

    Article  ADS  Google Scholar 

  40. M. Dubiel, H. Hofmeister, G.L. Than, K.D. Schicke, E. Wendler: J. Phys. D 23, (2003) in press

  41. R. Höschen, W. Sigle, F. Phillipp: Proc. EUREM-11, Dublin, Ireland, 26–30 August 1996, I 373/374 (Committee Europ. Soc. Microscopy, Brussels (Belgium) 1998)

  42. F. Banhart, P.M. Ajayan: Nature 382, 433 (1996)

    Article  ADS  Google Scholar 

  43. K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel: J. Am. Chem. Soc. 124, 2312 (2002)

    Article  Google Scholar 

  44. P. Buffat, J.P. Borel: Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  45. J.F. Pocza, A. Barna, P.B. Barna: J. Vac. Sci. Technol. 6, 472 (1969)

    Article  ADS  Google Scholar 

  46. N.T. Gladkich, R. Niedermayer, K. Spiegel: Phys. Stat. Sol. 15, 181 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Schaper.

Additional information

PACS

61.46.+w; 61.48.+c; 68.37.Lp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaper, A., Hou, H., Greiner, A. et al. Copper nanoparticles encapsulated in multi-shell carbon cages . Appl. Phys. A 78, 73–77 (2004). https://doi.org/10.1007/s00339-003-2199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2199-0

Keywords

Navigation