Skip to main content
Log in

Structural and spectral properties of SnO2 nanocrystal prepared by microemulsion technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Extrafine SnO2 nanocrystals as small as 2.4 nm were synthesized by the microemulsion method. The grain sizes and crystallization process were measured and investigated by X-ray diffraction. Two growth processes were proposed, and the activation energies of 4.3 and 23 KJ/mol were obtained for respective low-and fast-growth processes. TEM micrographs and the selected-area diffraction recorded their morphology and crystallization, well crystallized at about 773 K. All the IR modes measured by FT-IR spectrometer were assigned. The 616 cm-1 mode after annealing at 673 K showed fine crystallization. The temperature dependence of the Raman spectra shows that increase in intensity and decrease in linewidth of the 636 cm-1 mode with the increasing grain size indicate a phonon confinement effect. A new 330 cm-1 Raman mode originally inactive in bulk, was observed in the SnO2 nanocrystal by size effect. A low frequency mode at 76 cm-1 shifts to 38 cm-1 as the temperature goes up 873 K, which can be characterized to determine the SnO2 grain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Harrison, M.J. Willet: Nature 332, 337 (1988)

    Article  ADS  Google Scholar 

  2. J. Kappler, A. Tomescu, N. Barsan, U. Weimar: Thin Solid Films 391, 186 (2001)

    Article  ADS  Google Scholar 

  3. N. Amin, T. Isaka, A. Yamada, M. Konagai: Solar Energy Mater. Solar Cells 67, 195 (2001)

    Article  Google Scholar 

  4. S.R. Stampfl, Y. Chen, J.A. Dumesis, Ch. Niu, C.G. Hill: J. Catal. 105, 445 (1987)

    Article  Google Scholar 

  5. H. Torveia, S. Leppavuori: Intern. High Technol. Ceram. 3, 309 (1987)

    Article  Google Scholar 

  6. B. Lu, C. Wang, Y. Zhang: Appl. Phys. Lett. 70, 717 (1997)

    Article  ADS  Google Scholar 

  7. S. Semancik, R.E. Cavicchi: Acc. Chem. Res. 31, 279 (1998)

    Article  Google Scholar 

  8. T. Becker, S. Muhlberger, C. Bosch, V. Braunmuhl, G. Muller, T. Ziemann, K.V. Hetchtenberg: Sens. Actuators B 69, 108 (2000)

    Article  Google Scholar 

  9. M. Ristic, M. Ivanda, S. Popovic, S. Music: J. Non-Cryst. Solids 303, 270 (2002)

    Article  ADS  Google Scholar 

  10. L. Fraigi, D.G. Lamas, N.E. Walsoe de Reca: Nanostruct. Mater. 11, 311 (1999)

    Article  Google Scholar 

  11. M. Ocana, E. Matijevic: J. Mater. Res. 5, 1083 (1990)

    Article  ADS  Google Scholar 

  12. Y.P. He, Y.D. Li, J. Yu, Y.T. Qian: Mater. Lett. 40, 23 (1999)

    Article  Google Scholar 

  13. Y.K. Liu, C.L. Zheng, W.Z. Wang: J. Cryst. Growth 233, 8 (2001)

    Article  ADS  Google Scholar 

  14. J.J. Zhu, J.M. Zhu, X.H. Liao, J.L. Fang: Mater. Lett. 53, 12 (2002)

    Article  Google Scholar 

  15. H. Klug, L. Alexander: X-Ray Diffraction Procedure (Wiley, New York 1962) p. 125

  16. H. Klug, L. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York 1974) p. 618

  17. J.A. Nelson, E.L. Brant, M.J. Wagner: Chem. Mater. 15, 688 (2003)

    Article  Google Scholar 

  18. Y. Du, M.S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin: Appl. Phys. A 76, 171 (2003)

    Article  ADS  Google Scholar 

  19. R. Summit: J. Appl. Phys. 39, 3726 (1968)

    Google Scholar 

  20. V.M. Jimenez, A. Caballero: Solid State Ionics 116, 117 (1999)

    Article  Google Scholar 

  21. M. Ocaňa, C.J. Serna, J.V. Garcia-Ramos, E. Matijevic: Solid State Ionics 170, 63 (1993)

    Google Scholar 

  22. J.F. Scott: J. Chem. Phys. 53, 853 (1970)

    Article  ADS  Google Scholar 

  23. J.G. Traylor, H.G. Smith, R.M. Nicklov, M.K. Wilkinson: Phys. Rev. B 3, 3457 (1971)

    Article  ADS  Google Scholar 

  24. P.S. Peercy, B. Morosin: Phys. Rev. B 7, 2779 (1973)

    Article  ADS  Google Scholar 

  25. I.H. Campell, P.M. Fauchet: Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  26. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen: J. Phys. D 33, 912 (2000)

    Article  ADS  Google Scholar 

  27. J.E. Spanier, R.D. Robinson, F. Zhang, S. Chan, I.P. Herman: Phys. Rev. B 64, 245407 (2001)

    Article  ADS  Google Scholar 

  28. K.N. Yu, Y. Xiong, Y. Liu, C. Xiong: Phys. Rev. B 55, 2666 (1997)

    Article  ADS  Google Scholar 

  29. M. Ivanda, S. Music, M. Gotic, A. Turkovic, A.M. Tonejc, O. Gamulin: J. Molec. Struct. 641, 480 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.S. Zhang.

Additional information

PACS

61.46.+w; 61.10.-i; 78.30.-j; 81.20.-n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Zhang, M., Hong, J. et al. Structural and spectral properties of SnO2 nanocrystal prepared by microemulsion technique. Appl. Phys. A 81, 177–182 (2005). https://doi.org/10.1007/s00339-004-2742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2742-7

Keywords

Navigation