Skip to main content
Log in

Laser backside etching of fused silica due to carbon layer ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The backside ablation of a absorbing carbon layer onto fused silica is studied in air and water confinement in comparison. The confinement influences the etch rate and the laser fluence dependence of the etch rate significantly while the threshold fluence is almost the same. The different confinement of the laser induced plasma results in the observed rate saturation in the case of air and in a linear growing rate in the case of water confinement at medium laser fluences. The less dense air confinement permits a faster plasma expansion of the laser plume than in the case of water confinement and effects consequently the interaction time and interaction strength of the laser plume with the fused silica surface. The differences in the laser-plasma-substrate interaction cause the observed rate saturation at weak interaction (air) and the growing etch rate at strong interaction (water). Thus, the confinement situation controls the interaction process in the case of backside ablation and should be considered in indirect material processing methods such as LIBWE and LESAL, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bäuerle D (2000) Laser Processing and Chemistry, 3. Ed. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Ihlemann J, Wolff-Rottke B (1996) Appl. Surf. Sci. 106:282

    Article  ADS  Google Scholar 

  3. Dyer PE, Maswadi SM, Walton CD, Ersoz M, Fletcher PDI, Paunov VN (2003) Appl. Phys. A 77:391

    Article  ADS  Google Scholar 

  4. Ben-Yakar A, Byer RL (2004) J. Appl. Phys. 96:5316

    Article  ADS  Google Scholar 

  5. Wang J, Niino H, Yabe A (1999) Appl. Phys. A 68:111

    Article  ADS  Google Scholar 

  6. Böhme R, Braun A, Zimmer K (2002) Appl. Surf. Sci. 186:276

    Article  ADS  Google Scholar 

  7. Zimmer K, Böhme R, Rauschenbach B (2004) Appl. Phys. A 79:1883

    Article  ADS  Google Scholar 

  8. Böhme R, Spemann D, Zimmer K (2004) Thin Solid Films 453:127

    Article  ADS  Google Scholar 

  9. Shin JK, Lee CS, Lee KR, Eun KY (2001) Appl. Phys. Lett. 78:631

    Article  ADS  Google Scholar 

  10. Dupont A, Caminat P, Bournot P, Gauchon JP (1995) J. Appl. Phys. 78:2022

    Article  ADS  Google Scholar 

  11. Kane DM, Halfpenny DR (2000) J. Appl. Phys. 87:4548

    Article  ADS  Google Scholar 

  12. Zhao J, Sullivan J, Zayac J, Bennett TD (2004) J. Appl. Phys. 95:5475

    Article  ADS  Google Scholar 

  13. Kolomenskii AA, Lomonosov AM, Kuschnereit R, Hess P, Gusev VE (1997) Phys. Rev. Lett. 79:1325

    Article  ADS  Google Scholar 

  14. Allcock G, Dyer PE, Elliner G, Snelling HV (1995) J. Appl. Phys. 78:7295

    Article  ADS  Google Scholar 

  15. Haverkamp J, Mayo RM, Bourham MA, Narayan J, Jin C, Duscher G (2003) J. Appl. Phys. 93:3627

    Article  ADS  Google Scholar 

  16. Claeyssens F, Ashfold MNR, Sofoulakis E, Ristoscu CG, Anglos D, Fotakis C (2002) J. Appl. Phys. 91:6162

    Article  ADS  Google Scholar 

  17. Andreic Z, Gracin D, Aschke L, Kunze HJ (2001) Vacuum 61:385

    Article  ADS  Google Scholar 

  18. Loiseleur P, Hansen TN, Larour J, Lunney JG (2002) Appl. Surf. Sci. 197:164

    Article  ADS  Google Scholar 

  19. Sugioka K, Wada S, Tashiro H, Toyoda K, Ohnuma Y, Nakamura A (1995) Appl. Phys. Lett. 67:2789

    Article  ADS  Google Scholar 

  20. Dickinson JT (1991) Simultaneous bombardement of wide bandgap materials with UV excimer laser irradiation and KeV electrons. Springer, Berlin

    Google Scholar 

  21. Zhang J, Sugioka K, Midorikawa K (1998) Opt. Lett. 23:1486

    Article  ADS  Google Scholar 

  22. Makimura T, Mitani S, Kenmotsu Y, Murakami K, Mori M, Kondo K (2004) Appl. Phys. Lett. 85:1274

    Article  ADS  Google Scholar 

  23. Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) J. Appl. Phys. 82:2826

    Article  ADS  Google Scholar 

  24. Zhu S, Lu YF, Hong MH, Chen XY (2001) J. Appl. Phys. 89:2400

    Article  ADS  Google Scholar 

  25. Saito K, Sakka T, Ogata YH (2003) J. Appl. Phys. 94:5530

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Böhme.

Additional information

PACS

81.65.C; 81.05.K; 79.20.D; 61.80.B; 42.55.L; 68.45.D

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhme, R., Zimmer, K. & Rauschenbach, B. Laser backside etching of fused silica due to carbon layer ablation. Appl. Phys. A 82, 325–328 (2006). https://doi.org/10.1007/s00339-005-3387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3387-x

Keywords

Navigation