Skip to main content
Log in

Shell buckling behavior investigation of individual gallium nitride hollow nanocolumn

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents research on the calculating analysis and experimental observations of shell buckling in individual gallium nitride hollow nanocolumns using nanoindentation. By using the experiment results of critical buckling strain under compression, we investigated the stiffness of hollow nanocolumns which were vertically aligned on a template by using linear elastic shell buckling theory. In addition, more studies of various possible nanomechanical behavior modes of gallium nitride hollow nanocolumns by shall model are provided. Furthermore, there was a comparison between nanocolumns by molecular dynamics simulation (one dimensional structure) and thin film by nanoindentation experiment (two dimensional structures). Finally, the buckling energy of compression for an individual gallium nitride hollow nanocolumn was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yang, R. Fan, Y. Wu, Adv. Funct. Mater. 12, 323 (2002)

    Article  ADS  Google Scholar 

  2. P. Yang, Y. Wu, R. Fan, Inter. J. Nano. 1, 1 (2002)

    Article  Google Scholar 

  3. S.C. Hung, Y.K. Su, S.J. Chang, S.C. Chen, T.H. Fang, L.W. Ji, Physica E 28, 115 (2005)

    Article  ADS  Google Scholar 

  4. W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997)

    Article  Google Scholar 

  5. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000)

    Article  ADS  Google Scholar 

  6. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  7. L.D. Hicks, M.S. Dreselhaus, Phys. Rev. B 47, 16631 (1996)

    Article  ADS  Google Scholar 

  8. E.W. Wang, P.E. Sheehan, C.M. Lieber, Science 277, 1971 (1997)

    Article  Google Scholar 

  9. S. Nakamura, M. Senoh, T. Mukai, Appl. Phys. Lett. 62, 2390 (1993)

    Article  ADS  Google Scholar 

  10. S. Myhra, Appl. Phys. A 80, 1097 (2005)

    Article  ADS  Google Scholar 

  11. C.L. Heng, W.W. Tjiu, T.G. Finstad, Appl. Phys. A 78, 1181 (2004)

    Article  ADS  Google Scholar 

  12. T. Okada, K. Kawashima, M. Ueda, Appl. Phys. A 81, 907 (2005)

    Article  ADS  Google Scholar 

  13. F. Cappelli, S. Orlando, G. Mattei, C. Scilletta, F. Corticelli, P. Ascarelli, Appl. Phys. A 79, 2063 (2004)

    Article  ADS  Google Scholar 

  14. Y.R. Jeng, P.C. Tsai, T.H. Fang, Nanotechnology 15, 1737 (2004)

    Article  ADS  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  16. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000)

    Article  ADS  Google Scholar 

  17. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)

    Article  ADS  Google Scholar 

  18. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277, 1971 (1997)

    Article  Google Scholar 

  19. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 161 (1999)

    Article  Google Scholar 

  20. M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, R. Superfine, Nature 389, 582 (1997)

    Article  ADS  Google Scholar 

  21. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  22. T. Fukuda, F. Arai, L. Dong, Proc. IEEE 91, 1803 (2003)

    Article  Google Scholar 

  23. S.C. Hung, Y.K. Su, S.J. Chang, S.C. Chen, L.W. Ji, T.H. Fang, L.W. Tu, M. Chen, Appl. Phys. A 80, 1607 (2005)

    Article  ADS  Google Scholar 

  24. S.J. Chang, C.H. Chen, P.C. Chang, Y.K. Su, P.C. Chen, Y.D. Jhou, H. Hung, C.M. Wang, B.R. Huang, IEEE Trans. Electron. Dev. 50, 2567 (2003)

    Article  ADS  Google Scholar 

  25. S.J. Chang, M.L. Lee, J.K. Sheu, W.C. Lai, Y.K. Su, C.S. Chang, C.J. Kao, G.C. Chi, J.M. Tsai, IEEE Electr. Dev. Lett. 24, 212 (2003)

    Article  ADS  Google Scholar 

  26. S.J. Chang, C.S. Chang, Y.K. Su, R.W. Chuang, Y.C. Lin, S.C. Shei, H.M. Lo, H.Y. Lin, J.C. Ke, IEEE J. Quantum Electron QE-39, 1439 (2003)

    Article  ADS  Google Scholar 

  27. J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 2nd Edn. (Wadsworth, Inc., Belmont, 1984)

  28. B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996)

    Article  ADS  Google Scholar 

  29. R. Narayanan, Shell Structures Stability and Strength (Elsevier Applied Science Publishers, London, New York, 1985)

  30. S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961)

  31. S.R. Jian, T.H. Fang, D.S. Chuu, J. Electron. Mater. 32, 6 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Su.

Additional information

PACS

68.65.-K; 61.70.+w; 81.10.BK; 73.21.-b; 81.16.Rf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, SC., Su, YK., Fang, TH. et al. Shell buckling behavior investigation of individual gallium nitride hollow nanocolumn. Appl. Phys. A 84, 439–443 (2006). https://doi.org/10.1007/s00339-006-3632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3632-y

Keywords

Navigation