Skip to main content

Advertisement

Log in

Dilute magnetic semiconductor nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Semiconductor materials form the basis of modern electronics, communication, data storage and computing technologies. One of today’s challenges for the development of future technologies is the realization of devices that control not only the electron charge, as in present electronics, but also its spin, setting the basis for future spintronics. Spintronics represents the concept of the synergetic and multifunctional use of charge and spin dynamics of electrons, aiming to go beyond the traditional dichotomy of semiconductor electronics and magnetic storage technology. The most direct method to induce spin-polarized electrons into a semiconductor is by introducing appropriate transition-metal or rare-earth dopants producing a dilute magnetic semiconductor (DMS). At the same time the seamless integration of future spintronic devices into nanodevices would require the fabrication of one-dimensional DMS nanostructures in well-defined architectures. In this review we focus on recent advances in the synthesis of DMS nanowires as well discussing the structural, optical and magnetic properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, H. Munekata, T. Penney, S. Von Molnar, L.L. Chang, Phys. Rev. Lett. 68, 2664 (1992)

    Article  ADS  Google Scholar 

  2. G. Schmidt, J. Phys. D 38, R107 (2005)

    Article  ADS  Google Scholar 

  3. A.H. MacDonald, P. Schiffer, N. Samarth, Nat. Mater. 4, 195 (2005)

    Article  Google Scholar 

  4. S.J. Pearton, M.E. Overberg, G.T. Thaler, C.R. Abernathy, J. Kim, F. Ren, N. Theodoropoulou, A.F. Hebard, Y.D. Park, Phys. Stat. Solidi A 195, 222 (2003)

    Article  ADS  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  6. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    Article  Google Scholar 

  7. M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.K. Ritums, M.J. Reed, C.A. Parker, J.C. Roberts, S.M. Bedair, Appl. Phys. Lett. 79, 3473 (2001)

    Article  ADS  Google Scholar 

  8. S.J. Pearton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren, Y.D. Park, J.M. Zavada, I.A. Buyanova, W.M. Chen, A.F. Hebard, J. Phys.: Condens. Matter 16, R209 (2004)

    Article  ADS  Google Scholar 

  9. G.T. Thaler, R.M. Frazier, J. Stapleton, C.R. Abernathy, S.J. Pearton, J. Kelly, R. Rairigh, A.F. Hebard, J.M. Zavada, Electrochem. Solid State Lett. 7, G34 (2003)

    Article  Google Scholar 

  10. G.T. Thaler, M.E. Overberg, B. Gila, R. Frazier, C.R. Abernathy, S.J. Pearton, J.S. Lee, S.Y. Lee, Y.D. Park, Z.G. Khim, J. Kim, F. Ren, Appl. Phys. Lett. 80, 3964 (2002)

    Article  ADS  Google Scholar 

  11. S. Dhar, O. Brandt, A. Trampert, L. Daweritz, K.J. Friedland, K.H. Ploog, J. Keller, B. Beschoten, G. Guntherodt, Appl. Phys. Lett. 82, 2077 (2003)

    Article  ADS  Google Scholar 

  12. A.F. Hebard, R.P. Rairigh, J.G. Kelly, S.J. Pearton, C.R. Abernathy, S.N.G. Chu, R.G. Wilson, J. Phys. D 37, 511 (2004)

    Article  ADS  Google Scholar 

  13. J. Kudrnovsky, V. Drchal, I. Turek, L. Bergqvist, O. Eriksson, G. Bouzerar, L. Sandratskii, P. Bruno, J. Phys.: Condens. Matter 16, S5571 (2004)

    Article  ADS  Google Scholar 

  14. Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science 295, 651 (2002)

    Article  ADS  Google Scholar 

  15. S. Cho, S. Choi, S.C. Hong, Y. Kim, J.B. Ketterson, B.-J. Kim, Y.C. Kim, J.-H. Jung, Phys. Rev. B 66, 033303/1 (2002)

    Google Scholar 

  16. H. Braak, R.R. Gareev, D.E. Buergler, R. Schreiber, P. Gruenberg, C.M. Schneider, J. Magn. Magn. Mater. 286, 46 (2005)

    Article  ADS  Google Scholar 

  17. F. Tsui, L. He, L. Ma, A. Tkachuk, Y.S. Chu, K. Nakajima, T. Chikyow, Phys. Rev. Lett. 91, 177203/1 (2003)

    Google Scholar 

  18. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  19. M.T. Bjork, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002)

    Article  ADS  Google Scholar 

  20. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature (London) 409, 66 (2001)

    Article  ADS  Google Scholar 

  21. J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, J. Phys. Chem. B 105, 11387 (2001)

    Article  Google Scholar 

  22. X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 369, 220 (2003)

    Article  Google Scholar 

  23. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature 430, 61 (2004)

    Article  ADS  Google Scholar 

  24. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  25. C. Thelander, H.A. Nilsson, L.E. Jensen, L. Samuelson, Nano Lett. 5, 635 (2005)

    Article  Google Scholar 

  26. X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  27. L. Chen, P.J. Klar, W. Heimbrodt, F. Brieler, M. Froba, H.A. Krug von Nidda, A. Loidl, Physica E 10, 368 (2001)

    Article  ADS  Google Scholar 

  28. L. Chen, P.J. Klar, W. Heimbrodt, F. Brieler, M. Froba, Appl. Phys. Lett. 76, 3531 (2000)

    Article  ADS  Google Scholar 

  29. F.J. Brieler, M. Froba, L. Chen, P.J. Klar, W. Heimbrodt, H.-A. Krug von Nidda, A. Loidl, Chem. Eur. J. 8, 185 (2002)

    Article  Google Scholar 

  30. J.-O. Joswig, M. Springborg, G. Seifert, J. Phys. Chem. B 104, 2617 (2000)

    Article  Google Scholar 

  31. F.J. Brieler, P. Grundmann, M. Froeba, L. Chen, P.J. Klar, W. Heimbrodt, H.-A. Krug von Nidda, T. Kurz, A. Loidl, J. Am. Chem. Soc. 126, 797 (2004)

    Article  Google Scholar 

  32. A.V. Kouzema, M. Froeba, L. Chen, P.J. Klar, W. Heimbrodt, Adv. Funct. Mater. 15, 168 (2005)

    Article  Google Scholar 

  33. C.W. Na, D.S. Han, D.S. Kim, Y.J. Kang, J.Y. Lee, J. Park, D.K. Oh, K.S. Kim, D. Kim, J. Phys. Chem. B 110, 6699 (2006)

    Article  Google Scholar 

  34. P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian, C.M. Lieber, Nano Lett. 5, 1407 (2005)

    Article  Google Scholar 

  35. J.-P. Ge, J. Wang, H.-X. Zhang, X. Wang, Q. Peng, Y.-D. Li, Adv. Funct. Mater. 15, 303 (2005)

    Article  Google Scholar 

  36. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83, 4020 (2003)

    Article  ADS  Google Scholar 

  37. J.B. Cui, U.J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)

    Article  Google Scholar 

  38. S. Ghosh, V. Sih, W.H. Lau, D.D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, G. Chapline, Appl. Phys. Lett. 86, 232507 (2005)

    Article  Google Scholar 

  39. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    Article  ADS  Google Scholar 

  40. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  ADS  Google Scholar 

  41. Y.-Q. Chang, X.-Y. Xu, X.-H. Luo, Y. Long, R.-C. Ye, Chin. Phys. Lett. 22, 991 (2005)

    Article  Google Scholar 

  42. J.J. Liu, M.H. Yu, W.L. Zhou, Appl. Phys. Lett. 87, 172505/1 (2005)

    Google Scholar 

  43. J. Cui, U.J. Gibson, J. Phys. Chem. B 109, 22074 (2005)

    Article  Google Scholar 

  44. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  Google Scholar 

  45. Y.-H. Lee, J.-M. Yoo, D.-H. Park, D.H. Kim, B.K. Ju, Appl. Phys. Lett. 86, 033110 (2005)

    Article  ADS  Google Scholar 

  46. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 4176 (2004)

    Article  ADS  Google Scholar 

  47. S. Han, D. Zhang, C. Zhou, Appl. Phys. Lett. 88, 133109 (2006)

    Article  Google Scholar 

  48. F.L. Deepak, P.V. Vanitha, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 374, 314 (2003)

    Article  Google Scholar 

  49. H.-J. Choi, H.-K. Seong, J. Chang, K.-I. Lee, Y.-J. Park, J.-J. Kim, S.-K. Lee, R. He, T. Kuykendall, P. Yang, Adv. Mater. 17, 1351 (2005)

    Article  Google Scholar 

  50. D.S. Han, J. Park, K.W. Rhie, S. Kim, J. Chang, Appl. Phys. Lett. 86, 032506/1 (2005)

    Google Scholar 

  51. Y. Shon, Y.H. Kwon, T.W. Kang, X. Fan, D. Fu, Y. Kim, J. Cryst. Growth 245, 193 (2002)

    Article  Google Scholar 

  52. K. Sardar, A.R. Raju, B. Bansal, V. Venkataraman, C.N.R. Rao, Solid State Commun. 125, 55 (2003)

    Article  Google Scholar 

  53. Y.D. Park, J.D. Lim, K.S. Suh, S.B. Shim, J.S. Lee, C.R. Abernathy, S.J. Pearton, Y.S. Kim, Z.G. Khim, R.G. Wilson, Phys. Rev. B 68, 085210/1 (2003)

    Google Scholar 

  54. J. Kim, F. Ren, G.T. Thaler, R. Frazier, C.R. Abernathy, S.J. Pearton, J.M. Zavada, R.G. Wilson, Appl. Phys. Lett. 82, 1565 (2003)

    Article  ADS  Google Scholar 

  55. D.S. Han, S.Y. Bae, H.W. Seo, Y.J. Kang, J. Park, G. Lee, J.-P. Ahn, S. Kim, J. Chang, J. Phys. Chem. B 109, 9311 (2005)

    Article  Google Scholar 

  56. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, R.G. Wilson, Phys. Rev. Lett. 89, 107203 (2002)

    Article  ADS  Google Scholar 

  57. Y.M. Ksendzov, V.V. Makarov, Fiz. Tverd. Tela 12, 3166 (1970)

    Google Scholar 

  58. J.S. Kulkarni, O. Kazakova, D. Erts, M.A. Morris, M.T. Shaw, J.D. Holmes, Chem. Mater. 17, 3615 (2005)

    Article  Google Scholar 

  59. O. Kazakova, J.S. Kulkarni, J.D. Holmes, S.O. Demokritov, Phys. Rev. B 72, 094415/1 (2005)

    Google Scholar 

  60. D. Erts, B. Polyakov, B. Daly, M.A. Morris, S. Ellingboe, J. Boland, J.D. Holmes, J. Phys. Chem. B 110, 820 (2006)

    Article  Google Scholar 

  61. K.J. Ziegler, B. Polyakov, J.S. Kulkarni, T.A. Crowley, K.M. Ryan, M.A. Morris, D. Erts, J.D. Holmes, J. Mater. Chem. 14, 585 (2004)

    Article  Google Scholar 

  62. F. D’Orazio, F. Lucari, N. Pinto, L. Morresi, R. Murri, J. Magn. Magn. Mater. 272276, 2006 (2004)

    Article  Google Scholar 

  63. T. Dietl, Nat. Mater. 2, 646 (2003)

    Article  Google Scholar 

  64. H. Ohldag, V. Solinus, F.U. Hillebrecht, J.B. Goedkoop, M. Finazzi, F. Matsukura, H. Ohno, Appl. Phys. Lett. 76, 2928 (2000)

    Article  ADS  Google Scholar 

  65. J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, P. Weinberger, P. Bruno, Phys. Rev. B 69, 115208/1 (2004)

    Google Scholar 

  66. T. Jungwirth, J. Masek, J. Sinova, A.H. MacDonald, Phys. Rev. B 68, 161202/1 (2003)

    Google Scholar 

  67. S.J. Pearton, C.R. Abernathy, G.T. Thaler, R. Frazier, F. Ren, A.F. Hebard, Y.D. Park, D.P. Norton, W. Tang, M. Stavola, J.M. Zavada, R.G. Wilson, Physica B 340342, 39 (2003)

    Article  Google Scholar 

  68. X. Luo, S.B. Zhang, S.-H. Wei, Phys. Rev. B 70, 033308/1 (2004)

    Google Scholar 

  69. A.R. Phani, V. Grossi, M. Passacantando, L. Ottaviano, S. Santucci, in Tech. Proc. 2006 NSTI Nanotechnology Conf. Trade Show, Boston, 2006, p. 141

  70. V.V. Osipov, A.M. Bratkovsky, Phys. Rev. B 70, 205312/1 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D. Holmes.

Additional information

PACS

75.75.+a; 81.07.Vb; 68.65.La

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, J., Kazakova, O. & Holmes, J. Dilute magnetic semiconductor nanowires. Appl. Phys. A 85, 277–286 (2006). https://doi.org/10.1007/s00339-006-3722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3722-x

Keywords

Navigation