Skip to main content
Log in

Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.C. Veeranna Gowda, R.V. Anavekar, Solid State Ionics 176, 1393 (2005)

    Article  Google Scholar 

  2. P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Solid State Ionics 166, 27 (2004)

    Article  Google Scholar 

  3. F.M. Ezz-Eldin, N.A. El Alaily, Mater. Chem. Phys. 52, 175 (1998)

    Article  Google Scholar 

  4. H.A. El-Batal, F.M. Ezz-Eldin, N.A. El Alaily, Nucl. Sci. J. 31, 73 (1994)

    Article  Google Scholar 

  5. H.F. El-Batal, A.H. Ashour, Mater. Chem. Phys. 77, 677 (2002)

    Article  Google Scholar 

  6. T. Matsuo, M. Shibasaki, T. Katsumata, Solid State Ionics 154155, 759 (2002)

    Google Scholar 

  7. A. Memon, D.B. Tanner, J. Mater. Sci. 34, 3853 (1999)

    Article  Google Scholar 

  8. M.G. El-shaarawy, T. El-Assawy, Mater. Chem. Phys. 62, 1 (2000)

    Article  Google Scholar 

  9. D. Sreenivasu, V. Chandramouli, Bull. Mater. Sci. 23, 281 (2000)

    Google Scholar 

  10. R.J. Barczynski, L. Murawski, J. Non-Cryst. Solids 307310, 1055 (2002)

    Google Scholar 

  11. M.C. Goncalves, L.F. Santos, R.M. Almedia, CR Chimie 5, 845 (2002)

    Article  Google Scholar 

  12. L.R. Pinckney, Kirk–Othmer Encyclopedia of Chemical Technology 4, vol. 12 (Wiley, New York, 1994), p. 627

  13. M.A. Azooz., M.Sc. Thesis, Ain Shams university, “Benefication and Recyclying of some industrial wastes in particular cement dust for the production of glasses and glass-ceramics” (1997)

  14. A.A. Goktas, G.F. Nielson, M.C. Weinberg, J. Mater. Sci. 27, 24 (1992)

    Article  Google Scholar 

  15. N.A. Elalaily, M.M.I. Khalil, L.S. Ahmed, J. Phys.: Condens. Matter, in press

  16. A.R. Blythe, Electrical Properties of Polymers (Cambridge University Press, London, New York, Melbourne, 1979)

    Google Scholar 

  17. S.E. Gawily, M.M. Badawy, H.H. Hassan, M. Madani, Polym. Test. 21, 129 (2002)

    Google Scholar 

  18. M. Madani, Polym. Composite 17, 525 (2004)

    Google Scholar 

  19. M. Dawy, A.H. Salama, Mater. Chem. Phys. 71, 137 (2001)

    Article  Google Scholar 

  20. S. Hazra, S. Mandal, A. Ghosh, J. Chem. Phys. 104, 24 (1996)

    Article  Google Scholar 

  21. S. Hazra, A. Ghosh, J. Chem. Phys. 103, 14 (1995)

    Article  Google Scholar 

  22. H. Satou, H. Sakata, Mater. Chem. Phys. 65, 186 (2000)

    Article  Google Scholar 

  23. M.P.F. Graca, M.A. Valente, M.G.F. da Silva, J. Non-Cryst. Solids 267274 (2003)

  24. E. Mansour, Physica B 362, 88 (2005)

  25. B.V.R. Chowdari, Z. Rong, Mater. Sci. Eng. B 53, 241 (1998)

    Article  Google Scholar 

  26. G.S. Murugan, K.B.R. Varma, J. Non-Cryst. Solids 279, 1 (2001)

    Article  ADS  Google Scholar 

  27. E. Mansour, G.M. El-Damrawi, Y.M. Moustafa, S.A. El-Masksoud, H. Doweidar, Physica B 293, 268 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M.I. Khalil.

Additional information

PACS

71.55.Jv; 72.60.+g; 72.80.Ng

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, M. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide. Appl. Phys. A 86, 505–514 (2007). https://doi.org/10.1007/s00339-006-3802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3802-y

Keywords

Navigation