Skip to main content
Log in

Vapour transport growth of ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fabrication of low-dimensional ZnO structures has attracted enormous attention as such nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Many reported fabrication methods, especially for ZnO nanorods are mostly based on catalyst-assisted growth techniques that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on catalyst-free vapour-phase epitaxy growth of ZnO nanorods on 6H-SiC and (11-20)Al2O3 using purely elemental sources at relatively low temperatures and growth pressure. ZnO nanorods with widths of 80–900 nm and lengths of up to 12 μm were obtained. Nanorod density on the order of 109 cm-2 with homogenous luminescence and high purity was also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Banerjee, J. Rybczynski, J.Y. Huang, D.Z. Wang, K. Kempa, Z.F. Ren, Appl. Phys. A 80, 749 (2004)

    Article  ADS  Google Scholar 

  2. X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2003)

    Article  ADS  Google Scholar 

  3. C.X. Xu, X.W. Sun, Z.L. Dong, M.B. Yu, T.D. My, X.H. Zhang, S.J. Chua, T.J. White, Nanotechnology 15, 839 (2004)

    Article  ADS  Google Scholar 

  4. J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, J. Phys. Chem. B 105, 11387 (2001)

    Article  Google Scholar 

  5. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  Google Scholar 

  6. D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, Appl. Phys. Lett. 83, 2061 (2003)

    Article  ADS  Google Scholar 

  7. C. Jin, X. Yuan, W.-W. Ge, J.-M. Hong, X.-Q. Xin, Nanotechnology 14, 667 (2003)

    Article  ADS  Google Scholar 

  8. B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, K. Haga, Nanotechnology 15, S382 (2004)

    Article  ADS  Google Scholar 

  9. W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14, 1841 (2002)

    Article  Google Scholar 

  10. J.-J. Wu, S.-C. Liu, Adv. Mater. 14, 215 (2002)

    Article  MathSciNet  Google Scholar 

  11. S. Braun, H.G. Grimmeiss, J. Appl. Phys. 45, 2658 (1974)

    Article  ADS  Google Scholar 

  12. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Solidi B 241, 231 (2004)

    Article  Google Scholar 

  13. E.I. Givargizov, Nature (Russia) 1059, 20 (2003)

    Google Scholar 

  14. A.C. Mofor, A. El-Shaer, M. Suleiman, A. Bakin, A. Waag, Nanotechnology 17, 4859 (2006)

    Article  ADS  Google Scholar 

  15. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.C. Mofor.

Additional information

PACS

81.10.Bk; 81.15.Kk; 81.16.Hc; 78.55.Et; 81.05.Dz; 81.07.Bc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mofor, A., Bakin, A., Elshaer, A. et al. Vapour transport growth of ZnO nanorods. Appl. Phys. A 88, 17–20 (2007). https://doi.org/10.1007/s00339-007-3961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3961-5

Keywords

Navigation