Skip to main content
Log in

Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The polyvinyl alcohol (PVA)/halloysite nanotubes (HNTs) solution were prepared with the aid of ultrasonic treatment. The composite films were prepared through casting or coagulating the PVA/HNTs solution. The coagulation process was employed to obtain a composite film without aggregation of HNTs. It is shown that the particle size and distribution of HNTs in the PVA/HNTs solution is independent of the ratio between HNTs and PVA. It is also revealed that the aggregation of HNTs takes place during the drying process of the as cast film. Compared with the film by coagulation method, the HNTs in the as cast film show less profound effect on the nucleation of the crystallization of the PVA. The crystallization temperature initially increases with HNTs loading and overloading of HNTs tend to depress the improvement in the crystallization temperature. The glass transition temperature (Tg) of the composite film decreases with HNTs loading and the aggregation process shows practically no effect on the Tg. Inclusion of HNTs greatly depresses the decomposition of the PVA backbone, while it is not effective for improving the resistance to the abstraction of the side groups. The aggregation process at low concentration of HNTs has more significant effect on the thermal decomposition of composite films compared with that at high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schuman, M. Wikstrom, M. Rigdahl, Surf. Coat. Technol. 183, 96 (2004)

    Article  Google Scholar 

  2. M. Sjoberg, L. Bergstrom, A. Larsson, E. Sjostrom, Colloid Surf. A 159, 197 (1999)

    Article  Google Scholar 

  3. T. Schuman, M. Wikstrom, M. Rigdahl, Nord. Pulp Pap. Res. J. 18, 81 (2003)

    Google Scholar 

  4. H.C. Olsen, Text. Ind. 139, 79 (1975)

    Google Scholar 

  5. M.A. Geary, Am. Dyest. Rep. 74, 28 (1985)

    Google Scholar 

  6. Z.F. Zhu, Carbohyd. Polym. 54, 115 (2003)

    Article  Google Scholar 

  7. W.B. Liu, J. Peng, J. Food Eng. 71, 73 (2005)

    Article  Google Scholar 

  8. E. Chiellini, P. Cinelli, F. Chiellini, S.H. Imam, Macromol. Biosci. 4, 218 (2004)

    Article  Google Scholar 

  9. B. Lin, B.J. Xie, J. Appl. Polym. Sci. 93, 2775 (2004)

    Article  Google Scholar 

  10. S.L. Bassner, E.H. Klingenberg, Am. Ceram. Soc. Bull. 77, 71 (1998)

    Google Scholar 

  11. M. Mohsen-Nia, H. Modarress, J. Adhes. Sci. Technol. 20, 1273 (2006)

    Article  Google Scholar 

  12. F.P. Altman, Histochem. Cell. Biol. 28, 236 (1971)

    Google Scholar 

  13. S.J. Chiu, W.C. Chien, J. Power Sources 162, 21 (2006)

    Google Scholar 

  14. C.C. Yang, S.T. Hsu, W.C. Chien, J. Power Sources 152, 303 (2005)

    Google Scholar 

  15. K.E. Strawhecker, E. Manias, Chem. Mater. 12, 2943 (2000)

    Article  Google Scholar 

  16. J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee, G.S. Sur, J. Appl. Polym. Sci. 90, 3208 (2003)

    Article  Google Scholar 

  17. K. Nakane, T. Yamashita, K. Iwakura, F. Suzuki, J. Appl. Polym. Sci. 74, 133 (1999)

    Article  Google Scholar 

  18. Z.Q. Peng, D.J. Chen, J. Polym. Sci. B Polym. Phys. 44, 534 (2006)

    Article  Google Scholar 

  19. Y.R. Qui, Q.X. Zhang, J. Cent. South Univ. T. 10, 117 (2003)

    Google Scholar 

  20. O.M. Hemeda, D.M. Hemeda, M.Z. Said, Mech. Time Depend. Mater. 7, 251 (2003)

    Google Scholar 

  21. M.M. Elkholy, M.A. El-Shahawy, J. Mater. Sci. Mater. Electron. 4, 278 (1993)

    Article  Google Scholar 

  22. M.I. Abdel-Ati, O.M. Hemeda, M.M. Mosaad, D.M. Hemeda, J. Therm. Anal. Calorim. 42, 1113 (1994)

    Google Scholar 

  23. S.R. Levis, P.B. Deasy, Int. J. Pharm. 243, 125 (2002)

    Google Scholar 

  24. D.G. Shchukin, G.B. Sukhorukov, R.R. Price, Y.M. Lvov, Small 1, 510 (2005)

    Article  Google Scholar 

  25. H.M. Kelly, P.B. Deasy, E. Ziaka, N. Claffey, Int. J. Pharm. 274, 167 (2004)

    Google Scholar 

  26. J.W. Tae, B.S. Jang, J.R. Kim, I. Kim, D.W. Park, Solid State Ionics 172, 129 (2004)

    Article  Google Scholar 

  27. G.Y. Liu, F.Y. Kang, B.H. Li, Z.H. Huang, X.Y. Chuan, J. Phys. Chem. Solids 67, 1186 (2006)

    Article  ADS  Google Scholar 

  28. E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Clay Miner. 40, 383 (2005)

  29. M.L. Du, B.C. Guo, D.M. Jia, Eur. Polym. J. 42, 1362 (2006)

    Article  Google Scholar 

  30. F.M. Du, J.E. Fischer, K.I. Winey, J. Polym. Sci. B Polym. Phys. 41, 3333 (2003)

    Article  Google Scholar 

  31. R. Haggenmueller, J.E. Fischer, K.I. Winey, Macromolecules 39, 2964 (2006)

    Article  Google Scholar 

  32. Z.H. Mbhele, M.G. Salemane, C.G.C.E. van Sittert, J.M. Nedeljkovic, V. Djokovic, A.S. Luyt, Chem. Mater. 15, 5019 (2003)

    Article  Google Scholar 

  33. R.V. Kumar, Y. Koltypin, Y.S. Cohen, Y. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken, J. Mater. Chem. 10, 1125 (2000)

    Article  Google Scholar 

  34. C.L. Shao, N. Yu, Y.C. Liu, R.X. Mu, J. Phys. Chem. Solids 67, 1423 (2006)

    Article  ADS  Google Scholar 

  35. B. Sreedhar, M. Sairam, D.K. Chattopadhyay, P.A. Syamala Rathnam, D.V. Mohan Rao, J. Appl. Polym. Sci. 96, 1313 (2005)

    Article  Google Scholar 

  36. I.C. McNeill, J. Anal. Appl. Pyrol. 4041, 21 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guo.

Additional information

PACS

61.82.Pv; 61.46.Fg; 61.46.-w; 68.37.Lp; 67.80.Gb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Guo, B., Du, M. et al. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl. Phys. A 88, 391–395 (2007). https://doi.org/10.1007/s00339-007-3995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3995-8

Keywords

Navigation