Skip to main content
Log in

Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Colloidal copper nanoparticles were prepared by pulsed Nd:YAG laser ablation in water and acetone. Size and optical properties of the nanoparticles were characterized by transmission electron microscopy and UV–visible spectrophotometry, respectively. The copper particles were rather spherical and their mean diameter in water was 30 nm, whereas in acetone much smaller particles were produced with an average diameter of 3 nm. Optical extinction immediately after the ablation showed surface plasmon resonance peaks at 626 and 575 nm for the colloidal copper in water and acetone, respectively. Time evaluation showed a blue shift of the optical extinction maximum, which is related to the change of the particle size distribution. Copper nanoparticles in acetone are yellowish and stable even after 10 months. In water, the color of the blue-green solution was changed to brown-black and the nanoparticles precipitated completely after two weeks, which is assigned to oxidation of copper nanoparticles into copper oxide (II) as was confirmed by the electron diffraction pattern and optical absorption measurements. We conclude that the ablation of bulk copper in water and acetone is a physical and flexible method for synthesis of stable colloidal copper and oxidized copper nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhu, C. Zhang, Y. Yin, Nanotechnology 16, 3079 (2005)

    Article  ADS  Google Scholar 

  2. G. Larsen, S. Noriega, Appl. Catal. A Gen. 278, 73 (2004)

    Article  Google Scholar 

  3. H. Wang, Y. Huang, Z. Tan, X. Hu, Anal. Chim. Acta 526, 13 (2004)

    Article  Google Scholar 

  4. M.K. Patel, B.J. Nagare, D.M. Bayul, S.K. Haram, D.C. Kothari, Surf. Coat. Technol. 196, 96 (2005)

    Article  Google Scholar 

  5. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, S. Deki, J. Mater. Chem. 10, 2548 (2000)

    Article  Google Scholar 

  6. T.N. Rostovshchikov, V.V. Smirnov, V.M. Kozhevin, D.A. Yavsin, M.A. Zabelin, I.N. Yassievich, S.A. Gurevich, Appl. Catal. A Gen. 296, 70 (2005)

    Article  Google Scholar 

  7. A. Quaranta, R. Ceccato, C. Menato, L. Pederiva, N. Capra, R.D. Maschio, J. Non-Cryst. Solids 345–346, 671 (2004)

    Article  Google Scholar 

  8. A.A. Ponce, K.J. Klabunde, J. Mol. Catal. A Chem. 225, 1 (2005)

    Article  Google Scholar 

  9. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  10. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, Appl. Surf. Sci. 247, 418 (2005)

    Article  ADS  Google Scholar 

  11. J. Zhang, J. Worley, S. Denommee, C. Kingston, Z.J. Jakubek, N. Braidy, G.A. Botton, J. Phys. Chem. B 107, 6920 (2003)

    Article  Google Scholar 

  12. R.M. Tilaki, A. Iraji zad, S.M. Mahdavi, Appl. Phys. A 84, 215 (2006)

    Article  ADS  Google Scholar 

  13. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 106, 7572 (2002)

    Google Scholar 

  14. K. Sakiyama, K. Koga, T. Seto, M. Hirasawa, T. Orii, J. Phys. Chem. B 108, 523 (2004)

    Article  Google Scholar 

  15. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A 79, 1127 (2004)

    Article  ADS  Google Scholar 

  16. G.X. Chen, M.H. Hong, B. Lan, Z.B. Wang, Y.F. Lu, T.C. Chong, Appl. Surf. Sci. 228, 165 (2004)

    ADS  Google Scholar 

  17. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 4218 (2003)

    Article  Google Scholar 

  18. Y. Chen, C. Yeh, Colloid Surf. A: Physicochem. Eng. Aspects 197, 133 (2002)

    Article  Google Scholar 

  19. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 105, 5114 (2001)

    Article  Google Scholar 

  20. R.M. Tilaki, A. Iraji zad, S.M. Mahdavi, J. Nanopart. Res., published online, DOI: 10.1007/s11051-006-9143-0 (2006)

  21. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  22. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, X. Wang, Mater. Lett. 58, 3324 (2004)

    Article  Google Scholar 

  23. H. Wang, J. Xu, J. Zhu, H. Chen, J. Cryst. Growth 244, 88 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iraji zad.

Additional information

PACS

42.62.-b; 81.07.-b; 61.46.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilaki, R., Iraji zad, A. & Mahdavi, S. Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A 88, 415–419 (2007). https://doi.org/10.1007/s00339-007-4000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4000-2

Keywords

Navigation