Skip to main content
Log in

Limitations of portable XRF implementations in evaluating depth information: an archaeometric perspective

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Portable instruments that can perform non-destructive analysis techniques are of great importance due to their high applicability, which can extend beyond the controlled laboratory environment. Their importance has long been recognised in the archaeometric field where art historians, conservators and restorers perform analyses on art works without causing any damage and without the need to move the objects to specialized laboratories. The X-ray fluorescence (XRF) technique is a popular choice in the archaeometric field for in situ investigations with portable instrumentations. This enables qualitative (elemental analysis) and quantitative (chemical composition) information retrieval from the objects of interest. Quantitative analyses can be performed under the assumption that the sample is homogeneous and its surface material is the same as in the rest of the object.

This work aims to expose various details, including the strengths and the weaknesses of typical XRF analyses in the case of surface alterations, focusing on portable implementations. The chosen approach will be in line with certain issues considered important in archaeometry; nevertheless the presented findings are valid beyond this. We will focus our discussion on two kinds of objects that can be found in the cultural heritage field: artefacts that had their surface material altered due to prolonged exposure to the environment and artefacts that have been gilded. Our work also includes a critically examined overview of relevant information available in the literature. The core of our analysis focuses on two main distinct cases, that of multilayer objects and that of bronzes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Longoni, C. Fiorini, P. Leutenegger, S. Sciuti, G. Fronterotta, L. Strüder, P. Lechner, Nucl. Instrum. Methods A 409, 407 (1998)

    Article  Google Scholar 

  2. P. Moioli, C. Seccaroni, X-ray Spectrom. 29, 48 (2000)

    Article  Google Scholar 

  3. C. Zarkadas, A.G. Karydas, Spectrochim. Acta B 59, 1611 (2004)

    Article  Google Scholar 

  4. A. Gianoncelli, J. Castaing, A. Bouquillon, A. Polvorinos, P. Walter, X-ray Spectrom. 35, 365 (2006)

    Article  Google Scholar 

  5. J. Tate, Nucl. Instrum. Methods B 14, 20 (1986)

    Article  ADS  Google Scholar 

  6. A. Giumlia-Mair, Proc. 10th Int. Conf. on Particle Induced X-ray Emission and its Analytical Applications, Portorož, Slovenia, June 4–8, (2004)

  7. R. Linke, M. Schreiner, G. Demortier, M. Alram, X-ray Spectrom. 32, 373 (2003)

    Article  Google Scholar 

  8. R. Linke, M. Schreiner, G. Demortier, Nucl. Instrum. Methods B 226, 172 (2004)

    Article  ADS  Google Scholar 

  9. C. Fiorini, A. Gianoncelli, A. Longoni, F. Zaraga, X-ray Spectrom. 31, 92 (2002)

    Article  Google Scholar 

  10. R.M. Rousseau, X-ray Spectrom. 13, 115 (1984)

    Article  Google Scholar 

  11. A. Longoni, A. Gianoncelli, C. Fiorini, Alta Frequenza 13, 22 (2001)

    Google Scholar 

  12. C. Fiorini, A. Gianoncelli, A. Longoni, Proceeding of the Workshop Nazionale “Microelettronica e beni culturali”, Firenze, 19 Marzo 2001 (2002), p. 74

  13. QXAS-Axil software package available at http://www.iaea.org/OurWork/ST/NA/NAAL/pci/ins/xrf/pciXRFdown.php (2004)

  14. G. Lombardi, Archaeometry 40, 601 (2002)

    Article  Google Scholar 

  15. F. Beauchesne J.N. Barrandon, L. Alves, F.B. Gil, M.F. Guerra, Archaeometry 30, 187 (1988)

    Article  Google Scholar 

  16. R. Klockenkämper, H. Bubert, K. Hasler, Archaeometry 41, 311 (1999)

    Article  Google Scholar 

  17. L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40, 2083 (1998)

    Article  Google Scholar 

  18. H. Strandberg, Atmosph. Environ. 32, 3511 (1998)

    Article  Google Scholar 

  19. F. Mathis, PhD Thesis, Université Paris XI, Orsay, 2005

  20. T. Beldjoudi, F. Bardet, N. Lacoudre, S. Andrieu, A. Adriens, I. Costantinides, P. Brunella, La Revue de Métallurgie-CIT/Science et Génie des Matériaux (Septembre 2001), p. 804

  21. www.eu-artech.org

  22. L. Beck, S. Reveillon, S. Bosonnet, D. Eliot, F. Pilon, Nucl. Instrum. Methods B 226, 153 (2004)

    Article  ADS  Google Scholar 

  23. N. Ammannati, E. Martellucci, C. Parisi Presicce, A.M. Carruba, Proc. 28th Convegno Nazionale AIM (Milano, Nov. 8–10, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gianoncelli.

Additional information

PACS

78.66.Bz; 78.70.En; 33.20.Rm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianoncelli, A., Kourousias, G. Limitations of portable XRF implementations in evaluating depth information: an archaeometric perspective. Appl. Phys. A 89, 857–863 (2007). https://doi.org/10.1007/s00339-007-4221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4221-4

Keywords

Navigation