Skip to main content
Log in

Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) and Ni-doped zinc oxide (ZnO:Ni) films are prepared by atom beam sputtering with an intent of growing transparent conducting oxide (TCO) material and understanding its physical properties. The crystalline phases of the films are identified by the grazing angle X-ray diffraction (GAXRD) technique. Thicknesses of the films are measured by ellipsometry. Chemical states of the elements present in the films are investigated by X-ray photoelectron spectroscopy (XPS), which indicates the presence of Ni in the ZnO environment in a divalent state. Average transmission across the ZnO:Ni film was determined to be ∼83% in the visible region, which is less than that (∼90%) of undoped ZnO films. The resistivity measured by van der Pauw technique of the ZnO:Ni film (∼9×10-3 Ω cm) is two orders of magnitude smaller as compared to its undoped counterpart (1 Ω cm). For ZnO:Ni film an average carrier concentration of ∼1.4×1019 cm-3 was observed by Hall measurements. Two important mechanisms reported in the literature viz. influence of d–d transition bands and electron scattering from crystallites/grains are discussed as the possible causes for the increase in conductivity on Ni doping in ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chen, F. Jen, Y.C. Lu, H.C. Wang, C.C. Yang, B.P. Zhang, Y. Segawa, Symp. N, ICMAT-2005, Singapore, July (2005)

  2. S.H. Jeong, J.W. Lee, S.B. Lee, J.H. Boo, Thin Solid Films 435, 78 (2003)

    Article  ADS  Google Scholar 

  3. J.J. Robbins, J. Harvey, J. Leaf, C. Fry, C.A. Wolden, Thin Solid Films 473, 35 (2005)

    Article  ADS  Google Scholar 

  4. N. Sanmyo, Y. Tomita, K. Kobayashi, Key Eng. Mater. 248, 87 (2003)

    Article  Google Scholar 

  5. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin Solid Films 445, 263 (2003)

    Article  ADS  Google Scholar 

  6. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  ADS  Google Scholar 

  7. Z.-Z. Ye, J.-F. Tang, Appl. Opt. 28, 2817 (1989)

    ADS  Google Scholar 

  8. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physica E 10, 260 (2001)

    Article  ADS  Google Scholar 

  9. D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin, Appl. Phys. Lett. 85, 1395 (2004)

    Article  ADS  Google Scholar 

  10. P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)

    Article  ADS  Google Scholar 

  11. Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. Ibrahim, Solid Stat. Commun. 135, 430 (2005)

    Google Scholar 

  12. X.B. Wang, C. Song, D.M. Li, K.W. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 1639 (2006)

    Article  ADS  Google Scholar 

  13. D. Shimono, S. Tanaka, T. Torikai, T. Watari, M. Murano, J. Ceram. Proc. Res. 2, 184 (2001)

    Google Scholar 

  14. S. Singh, N. Rama, M.S. Ramachandra Rao, Appl. Phys. Lett. 88, 222111 (2006)

    Article  ADS  Google Scholar 

  15. B.D. Culity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 102

    Google Scholar 

  16. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, Englewood Cliffs, NJ, 2001), p. 194

    Google Scholar 

  17. A. Kuroyanagi, J. Appl. Phys. 66, 5492 (1989)

    Article  ADS  Google Scholar 

  18. K.S. Kim, R.E. Davis, J. Electron. Spetrosc. Relat. Phenom. 1, 251 (1972/1973)

    Google Scholar 

  19. S. Hüfner, G.K. Wertheim, Phys. Rev. B 8, 4857 (1973)

    Article  ADS  Google Scholar 

  20. G.H. Yu, L.R. Zeng, F.W. Zhu, C.L. Chai, W.Y. Lai, J. Appl. Phys. 90, 4039 (2001)

    Article  ADS  Google Scholar 

  21. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  22. H. Katayama-Yoshida, K. Sato, Physica B 327, 337 (2003)

    Article  ADS  Google Scholar 

  23. Y. Imai, A. Watanabe, J. Mater. Sci. Mater. Electron. 15, 743 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Additional information

PACS

73.50.Bk; 78.66.Li; 79.60.Dp; 61.05.cp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Srivastava, P., Pandey, B. et al. Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique. Appl. Phys. A 90, 765–769 (2008). https://doi.org/10.1007/s00339-007-4353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4353-6

Keywords

Navigation