Skip to main content
Log in

Multiple shear banding in a computational amorphous alloy model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The strain localized phenomenon, so called shear bands (SBs), in an amorphous alloy have received a lot of attention in recent years. In this study, we microscopically investigated the nature and dynamics of multiple SBs using molecular dynamics model. In the SB region, intense shear-induced structural change occurred, typified by the annihilation of pentagonal short-range order, and significant localized heating accompanied with the SB propagation was observed. Moreover, a large number of fine SBs operated simultaneously at a high strain rate, whereas, only a few SBs appeared and propagated abruptly at a low strain rate. These results were discussed with respect to brittle/ductile deformation of bulk metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, Mater. Trans. JIM 36, 866 (1995)

    Google Scholar 

  2. Z.F. Zhang, J. Eckert, L. Schultz, Acta Mater. 51, 1167 (2003)

    Article  Google Scholar 

  3. C.A. Pampillo, Scr. Metall. 6, 915 (1972)

    Article  Google Scholar 

  4. K.D. Krishnanand, R.W. Cahn, Scr. Metall. 9, 1259 (1975)

    Article  Google Scholar 

  5. F. Shimizu, S. Ogata, J. Li, Acta Mater. 54, 4293 (2006)

    Article  Google Scholar 

  6. E. Pekarskaya, C.P. Kim, W.L. Johnson, J. Mater. Res. 16, 2513 (2001)

    Article  ADS  Google Scholar 

  7. Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, A. Inoue, Scripta Mater. 44, 1529 (2001)

    Article  Google Scholar 

  8. Y.K. Xu, H. Ma, J. Xu, E. Ma, Acta Mater. 53, 1857 (2005)

    Article  Google Scholar 

  9. K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen, Appl. Phys. Lett. 88, 122106 (2006)

    Article  ADS  Google Scholar 

  10. J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, Z.F. Zhang, Intermetallics 14, 876 (2006)

    Article  Google Scholar 

  11. W.J. Wright, R.B. Schwarz, W.D. Nix, Mater Sci. Eng. A 319321, 229 (2001)

    Google Scholar 

  12. P.S. Steif, F. Spaepen, J.W. Hutchinson, Acta Metall. 30, 447 (1982)

    Article  Google Scholar 

  13. K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, R.H. Howell, J. Mater. Res. 17, 1153 (2002)

    Article  ADS  Google Scholar 

  14. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Scripta Mater. 46, 43 (2002)

    Article  Google Scholar 

  15. A.V. Sergueeva, N.A. Mara, D.J. Branagan, A.K. Mukherjee, Scripta Mater. 50, 1303 (2004)

    Article  Google Scholar 

  16. L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, G.S. Yu, Intermetallics 13, 827 (2005)

    Article  Google Scholar 

  17. A.V. Sergueeva, N.A. Mara, J.D. Kuntz, E.J. Lavernia, A.K. Mukherjee, Philos. Mag. 85, 2671 (2005)

    Article  ADS  Google Scholar 

  18. Y. Shi, M.L. Falk, Appl. Phys. Lett. 86, 011914 (2005)

    Article  ADS  Google Scholar 

  19. Y. Shi, M.L. Falk, Phys. Rev. B 73, 214201 (2006)

    Article  ADS  Google Scholar 

  20. Q.K. Li, M. Li, Appl. Phys. Lett. 88, 241903 (2006)

    Article  ADS  Google Scholar 

  21. S. Ogata, F. Shimizu, J. Li, M. Wakeda, Y. Shibutani, Intermetallics 14, 1033 (2006)

    Article  Google Scholar 

  22. M. Wakeda, Y. Shibutani, S. Ogata, J. Park, Intermetallics 15, 139 (2007)

    Article  Google Scholar 

  23. S. Kobayashi, K. Maeda, S. Takeuchi, Acta Metall. 28, 1641 (1980)

    Article  Google Scholar 

  24. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  25. Y. Waseda, T. Masumoto, Z. Phys. B 21, 235 (1975)

    Article  ADS  Google Scholar 

  26. K. Nakatani, H. Kitagawa, A. Nakatani, J. Soc. Mater. Sci. Japan 46, 244 (1997)

    Google Scholar 

  27. A.C. Lund, C.A. Schuh, Acta Mater. 51, 5399 (2003)

    Article  Google Scholar 

  28. R. Quinson, J. Perez, M. Rink, A. Pavan, J. Mater. Sci. 32, 1371 (1997)

    Article  Google Scholar 

  29. P.H. Mott, A.S. Argon, U.W. Suter, J. Comput. Phys. 101, 140 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. J. Park, Y. Shibutani, S. Ogata, M. Wakeda, Mater. Trans. 46, 2848 (2005)

    Article  Google Scholar 

  31. H. Jónsson, H.C. Andersen, Phys. Rev. Lett. 60, 2295 (1988)

    Article  ADS  Google Scholar 

  32. D.W. Qi, S. Wang, Phys. Rev. B 44, 884 (1991)

    Article  ADS  Google Scholar 

  33. F. Spaepen, Acta Metall. 25, 407 (1977)

    Article  Google Scholar 

  34. J. Li, Z.L. Wang, T.C. Hufnagel, Phys. Rev. B 65, 144201 (2002)

    Article  ADS  Google Scholar 

  35. P.E. Donovan, W.M. Stobbs, Acta Metall. 29, 1419 (1981)

    Article  Google Scholar 

  36. A.S. Argon, J. Megusar, N.J. Grant, Scripta Metall. 19, 591 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shibutani.

Additional information

PACS

31.15.xv; 62.20.F-; 81.05.Kf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakeda, M., Shibutani, Y., Ogata, S. et al. Multiple shear banding in a computational amorphous alloy model. Appl. Phys. A 91, 281–285 (2008). https://doi.org/10.1007/s00339-008-4395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4395-4

Keywords

Navigation