Skip to main content
Log in

Enhanced magnetization of nanoparticles of Mg x Fe(3−x)O4 (0.5≤x≤1.5) synthesized by combustion reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the first time nanocrystalline magnetic particles of Mg x Fe(3−x)O4 with x ranging from 0.5 to 1.5 have been synthesized by a combustion reaction method using iron nitrate Fe(NO3)3.9H2O, magnesium nitrate Mg(NO3)2.6H2O, and urea CO(NH2)2 as fuel without intermediate decomposition and/or calcining steps. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of MgFe2O4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The mean crystallite sizes determined from the prominent (311) peak of the diffraction using Scherrer’s equation and transmission electron microscopy micrographs were c.a. 40 nm with spherical morphology. Fourier transform infrared spectra of the as-prepared material showed traces of organic and metallic salt by-products; however, these could be removed by washing with deionized water. Typical hysteresis curves were obtained for all specimens in magnetic field up to 14 T between 4 and 340 K. The saturation magnetization was 48.3 emu/g and 31.3 emu/g, 44.8 emu/g, and 28.4 emu/g for x=1.0 and 0.8 at 4 K and 340 K, respectively. The saturation magnetization, M s , of nanoparticles of the MgFe2O4 specimen is about 50% higher when compared to the bulk. The enhanced magnetization measured in our nanoparticles MgFe2O4 specimens may be attributed to the uncompensated magnetic moment of iron ions between the A- and B-sites, i.e., changes in the inversion factor. Our magnetization results of MgFe2O4 specimens are comparable to the existing data for the same compound but with different particle size and prepared by different synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Oliver, R.J. Willey, H.H. Handeh, G. Oliveri, G. Busca, Scr. Mater. 33, 1695 (1995)

    Article  Google Scholar 

  2. S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Mater. Lett. 58, 1092 (2004)

    Article  Google Scholar 

  3. G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, J. Chem. Soc., Faraday Trans. 92, 4687 (1996)

    Article  Google Scholar 

  4. Y. Shimizu, H. Arai, T. Seiyama, Sens. Actuators 7, 11 (1985)

    Article  Google Scholar 

  5. A. Goldman, Modern Ferrite Technology (Van Nostrand-Reicnhold, New York, 1990)

    Google Scholar 

  6. T. Machera, K. Konishi, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe, K. Kawachi, Jpn. J. Appl. Phys. 41, 1620 (2002)

    Article  ADS  Google Scholar 

  7. K. Haneda, A.H. Morrish, J. Appl. Phys. 63, 4258 (1998)

    Article  ADS  Google Scholar 

  8. E.K. Mooney, J.A. Nelson, M.J. Wagner, Chem. Mater. 16, 3155 (2004)

    Article  Google Scholar 

  9. L. Horng, G. Chern, M.C. Chen, P.C. Kang, D.S. Lee, J. Magn. Magn. Mater. 108, 389 (2004)

    Article  ADS  Google Scholar 

  10. A. Franco Jr., E.C.O. Lima, M.A. Novak, P. Well Jr., J. Magn. Magn. Mater. 308, 198 (2007)

    Article  ADS  Google Scholar 

  11. A. Franco Jr., V. Zapf, J. Appl. Phys. 101, 09M506 (2007)

    Google Scholar 

  12. F. Nakagomi, S.W. da Silva, V.K. Garg, A.C. Oliveira, P.C. Morais, A. Franco Jr., E.C.D. Lima, J. Appl. Phys. 101, 09M514 (2007)

    Article  Google Scholar 

  13. A. Franco Jr., V. Zapf, J. Magn. Magn. Mater. 320, 107 (2008)

    Article  Google Scholar 

  14. D.R. Cornejo, A. Medina-Boudri, H.R. Bertorello, J. Matutes-Aquino, J. Magn. Magn. Mater. 242, 194 (2002)

    Article  ADS  Google Scholar 

  15. M. Rajendran, R.C. Pulla, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, J. Magn. Magn. Mater. 232, 71 (2001)

    Article  ADS  Google Scholar 

  16. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Munoz, M. Mikhov, J. Magn. Magn. Mater. 183, 163 (1998)

    Article  ADS  Google Scholar 

  17. V. Šepelák, D. Baabe, D. Mienert, F.J. Litterst, K.D. Becker, Scr. Mater. 48, 961 (2003)

    Article  Google Scholar 

  18. T. Sato, K. Haneda, M. Seki, T. Lijima, Appl. Phys. A: Solids Surf. 50, 13 (1990)

    Article  ADS  Google Scholar 

  19. T. Kamiyama, K. Haneda, T. Sato, S. Ikeda, H. Asano, Solid State Commun. 81, 563 (1962)

    Article  ADS  Google Scholar 

  20. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Olèans, J.L. Rehspringer, M. Kurmoo, Chem. Mater. 16, 5689 (2004)

    Article  Google Scholar 

  21. Y. Shi, J. Ding, H. Yin, J. Alloys Compd. 308, 290 (2000)

    Article  Google Scholar 

  22. Y. Shi, J. Ding, X. Liu, J. Wang, J. Magn. Magn. Mater. 205, 249 (1999)

    Article  ADS  Google Scholar 

  23. K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Mater. Chem. Phys. 93, 224 (2005)

    Article  Google Scholar 

  24. V. Šepelák, D. Baabe, F.J. Litterst, K.D. Becker, J. Appl. Phys. 88, 10 (2000)

    Google Scholar 

  25. P. Druska, U. Steinike, V. Šepelák, J. Solid State Chem. 146, 13 (1999)

    Article  ADS  Google Scholar 

  26. V. Šepelák, K. Tkacova, V.V. Boldyrev, U. Steinike, Mater. Sci. Forum 783, 228 (1996)

    Google Scholar 

  27. V. Šepelák, A.Yu. Rogachev, U. Steinike, D.Chr. Uccker, S. Wibmann, K.D. Becker, Acta Crystallogr. A 52(Suppl.), 367 (1996)

    Article  Google Scholar 

  28. I. Bergmann, V. Šepelák, K.D. Becker, Solid State Ion. 177, 1865 (2006)

    Article  Google Scholar 

  29. V. Pillai, D.O. Shah, J. Magn. Magn. Mater. 163, 243 (1996)

    Article  ADS  Google Scholar 

  30. S.R. Jain, K.C. Adiga, V.R. Pai Vernecker, Combust. Flame 40, 71 (1981)

    Article  Google Scholar 

  31. R.H.G.A. Kiminami, J. Kona, Powder Particle 19, 156 (2001)

    Article  Google Scholar 

  32. A.C.M. Costa, E. Tortella, M.R. Morelli, M. Kaufman, R.H.G.A. Kiminami, J. Math. Sci. 37, 3569 (2002)

    Article  ADS  Google Scholar 

  33. P. Sherrer, Nachr. Cöttinger Gesell 2, 98 (1918)

    Google Scholar 

  34. B.E. Warren, X-Ray Diffraction (Dover, New York, 1990)

    Google Scholar 

  35. C. Dong, H.M. Chen, F. Wu, J. Appl. Crystallogr. 32, 168 (1999)

    Article  Google Scholar 

  36. D.H. Lee, H.S. Kim, J.Y. Lee, C.H. Yo, K.H. Kim, Solid State Commun. 96, 445 (1995)

    Article  ADS  Google Scholar 

  37. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  ADS  Google Scholar 

  38. H.A. Capelle, L.G. Britcher, G.E. Morris, J. Colloid. Interface Sci. 268, 293 (2003)

    Article  Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New Jersey, 1986)

    Google Scholar 

  40. B.D. Cullity, Introduction to Magnetic Materials (Addison–Wesley, Reading, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Franco Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, A., Pereira Alves, T.E., de Oliveira Lima, E.C. et al. Enhanced magnetization of nanoparticles of Mg x Fe(3−x)O4 (0.5≤x≤1.5) synthesized by combustion reaction. Appl. Phys. A 94, 131–137 (2009). https://doi.org/10.1007/s00339-008-4684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4684-y

PACS

Navigation